These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20978646)

  • 1. Influence of preparation design on failure risks of ceramic inlays: a finite element analysis.
    Ona M; Watanabe C; Igarashi Y; Wakabayashi N
    J Adhes Dent; 2011 Aug; 13(4):367-73. PubMed ID: 20978646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study.
    Ausiello P; Rengo S; Davidson CL; Watts DC
    Dent Mater; 2004 Nov; 20(9):862-72. PubMed ID: 15451242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.
    Dejak B; Mlotkowski A
    J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength estimation of different designs of ceramic inlays and onlays in molars based on the Tsai-Wu failure criterion.
    Dejak B; Mlotkowski A; Romanowicz M
    J Prosthet Dent; 2007 Aug; 98(2):89-100. PubMed ID: 17692590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramic inlays: is the inlay thickness an important factor influencing the fracture risk?
    Holberg C; Rudzki-Janson I; Wichelhaus A; Winterhalder P
    J Dent; 2013 Jul; 41(7):628-35. PubMed ID: 23639702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Premolar cuspal flexure as a function of restorative material and occlusal contact location.
    Magne P; Oganesyan T
    Quintessence Int; 2009 May; 40(5):363-70. PubMed ID: 19582240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis.
    Trindade FZ; Valandro LF; de Jager N; Bottino MA; Kleverlaan CJ
    J Prosthodont; 2018 Oct; 27(8):741-747. PubMed ID: 27696615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure.
    Magne P; Belser UC
    Int J Periodontics Restorative Dent; 2003 Dec; 23(6):543-55. PubMed ID: 14703758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication - FEA.
    Dejak B; Młotkowski A
    Dent Mater; 2020 Jul; 36(7):854-864. PubMed ID: 32473834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of push-out bond strength of direct ceramic inlays to tooth surface with fiber-reinforced composite at the interface.
    Cekic I; Ergun G; Uctasli S; Lassila LV
    J Prosthet Dent; 2007 May; 97(5):271-8. PubMed ID: 17547945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramic inlays: a case presentation and lessons learned from the literature.
    Boushell LW; Ritter AV
    J Esthet Restor Dent; 2009; 21(2):77-87. PubMed ID: 19368595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication.
    Dejak B; Młotkowski A
    Dent Mater; 2015 Mar; 31(3):e77-87. PubMed ID: 25544104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.
    Durand LB; Guimarães JC; Monteiro Junior S; Baratieri LN
    Braz Dent J; 2015; 26(2):146-51. PubMed ID: 25831105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of occlusal contact area on cusp defection and stress distribution.
    Costa AK; Xavier TA; Paes-Junior TJ; Andreatta-Filho OD; Borges AL
    J Contemp Dent Pract; 2014 Nov; 15(6):699-704. PubMed ID: 25825093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Three-dimensional finite element analysis of cuspal-coverage thickness influence on the stress distribution of all-ceramic onlay-restored premolars].
    She YH; Zhang YY; Liu YX; Fang CY
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2019 Dec; 37(6):636-641. PubMed ID: 31875443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress analysis of cemented or resin-bonded loaded porcelain inlays.
    Dérand T
    Dent Mater; 1991 Jan; 7(1):21-4. PubMed ID: 2015995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture risk of lithium-disilicate ceramic inlays: a finite element analysis.
    Holberg C; Winterhalder P; Wichelhaus A; Hickel R; Huth K
    Dent Mater; 2013 Dec; 29(12):1244-50. PubMed ID: 24119917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration.
    Liu X; Fok A; Li H
    Dent Mater; 2014 Mar; 30(3):327-33. PubMed ID: 24424091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of material and loading location on stress distribution of inlays.
    Costa VCD; Machado AC; Soares PV; Raposo LH; Vasconcellos AB
    Am J Dent; 2021 Jun; 34(3):171-176. PubMed ID: 34143589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical examination of inlay geometries--is there a basic biomechanical principle?
    Arnetzl GV; Arnetzl G
    Int J Comput Dent; 2009; 12(2):119-30. PubMed ID: 19413268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.