These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20978767)

  • 1. Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars.
    Basnayake SW; Moyle R; Birch RG
    Plant Cell Rep; 2011 Mar; 30(3):439-48. PubMed ID: 20978767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugarcane (Saccharum spp. hybrids).
    Wu H; Altpeter F
    Methods Mol Biol; 2015; 1224():307-16. PubMed ID: 25416267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes.
    Ijaz S; Rana IA; Khan IA; Saleem M
    Genet Mol Res; 2012 Mar; 11(1):512-30. PubMed ID: 22535387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds.
    Manickavasagam M; Ganapathi A; Anbazhagan VR; Sudhakar B; Selvaraj N; Vasudevan A; Kasthurirengan S
    Plant Cell Rep; 2004 Sep; 23(3):134-43. PubMed ID: 15133712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugarcane (Saccharum spp.).
    Arencibia AD; Carmona ER
    Methods Mol Biol; 2006; 344():227-35. PubMed ID: 17033066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane.
    Mayavan S; Subramanyam K; Arun M; Rajesh M; Kapil Dev G; Sivanandhan G; Jaganath B; Manickavasagam M; Selvaraj N; Ganapathi A
    Plant Cell Rep; 2013 Oct; 32(10):1557-74. PubMed ID: 23749098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Improvement of somatic embryogenesis process in sugarcane Venezuelan cultivars].
    Marcano AK; Molina Guevara P; Oropeza M; de GarcĂ­a E
    Acta Cient Venez; 2002; 53(4):251-7. PubMed ID: 12945490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.
    Snyman SJ; Meyer GM; Richards JM; Haricharan N; Ramgareeb S; Huckett BI
    Plant Cell Rep; 2006 Oct; 25(10):1016-23. PubMed ID: 16568253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures.
    Ribas AF; Dechamp E; Champion A; Bertrand B; Combes MC; Verdeil JL; Lapeyre F; Lashermes P; Etienne H
    BMC Plant Biol; 2011 May; 11():92. PubMed ID: 21595964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid and highly efficient method for transformation of sugarcane callus.
    Santosa DA; Hendroko R; Farouk A; Greiner R
    Mol Biotechnol; 2004 Oct; 28(2):113-9. PubMed ID: 15477650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.
    Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ
    Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane.
    Joyce P; Kuwahata M; Turner N; Lakshmanan P
    Plant Cell Rep; 2010 Feb; 29(2):173-83. PubMed ID: 20041254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.).
    King ZR; Bray AL; Lafayette PR; Parrott WA
    Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants.
    Jain M; Chengalrayan K; Abouzid A; Gallo M
    Plant Cell Rep; 2007 May; 26(5):581-90. PubMed ID: 17149641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic transformation of sweet sorghum.
    Raghuwanshi A; Birch RG
    Plant Cell Rep; 2010 Sep; 29(9):997-1005. PubMed ID: 20535472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized somatic embryogenesis and plant regeneration in elite Argentinian sugarcane (Saccharum spp.) cultivars.
    Di Pauli V; Fontana PD; Lewi DM; Felipe A; ErazzĂș LE
    J Genet Eng Biotechnol; 2021 Nov; 19(1):171. PubMed ID: 34750689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons.
    Cheng L; Li HP; Qu B; Huang T; Tu JX; Fu TD; Liao YC
    Plant Cell Rep; 2010 Apr; 29(4):371-81. PubMed ID: 20179937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable transformation of plants.
    Jones HD; Sparks CA
    Methods Mol Biol; 2009; 513():111-30. PubMed ID: 19347645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of plant regeneration and transformation protocols for the desiccation-sensitive weeping lovegrass Eragrostis curvula.
    Ncanana S; Brandt W; Lindsey G; Farrant J
    Plant Cell Rep; 2005 Aug; 24(6):335-40. PubMed ID: 15776238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants.
    Husaini AM
    Plant Cell Rep; 2010 Jan; 29(1):97-110. PubMed ID: 19956955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.