These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 20978852)
1. Drug effects analysis on cells using a high throughput microfluidic chip. Gong Z; Zhao H; Zhang T; Nie F; Pathak P; Cui K; Wang Z; Wong S; Que L Biomed Microdevices; 2011 Feb; 13(1):215-9. PubMed ID: 20978852 [TBL] [Abstract][Full Text] [Related]
2. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698 [TBL] [Abstract][Full Text] [Related]
3. A 3-D microfluidic combinatorial cell array. Liu MC; Tai YC Biomed Microdevices; 2011 Feb; 13(1):191-201. PubMed ID: 21063783 [TBL] [Abstract][Full Text] [Related]
4. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192 [TBL] [Abstract][Full Text] [Related]
5. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic serial dilution cell-based assay for analyzing drug dose response over a wide concentration range. Sugiura S; Hattori K; Kanamori T Anal Chem; 2010 Oct; 82(19):8278-82. PubMed ID: 20822164 [TBL] [Abstract][Full Text] [Related]
7. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. Li Q; Chen C; Kapadia A; Zhou Q; Harper MK; Schaack J; LaBarbera DV J Biomol Screen; 2011 Feb; 16(2):141-54. PubMed ID: 21297102 [TBL] [Abstract][Full Text] [Related]
8. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Chen MC; Gupta M; Cheung KC Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849 [TBL] [Abstract][Full Text] [Related]
9. Microbioreactors for high-throughput cytotoxicity assays. Yang ST; Zhang X; Wen Y Curr Opin Drug Discov Devel; 2008 Jan; 11(1):111-27. PubMed ID: 18175274 [TBL] [Abstract][Full Text] [Related]
10. Parallel microfluidic networks for studying cellular response to chemical modulation. Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314 [TBL] [Abstract][Full Text] [Related]
11. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Park MC; Hur JY; Cho HS; Park SH; Suh KY Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290 [TBL] [Abstract][Full Text] [Related]
12. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Kim C; Bang JH; Kim YE; Lee SH; Kang JY Lab Chip; 2012 Oct; 12(20):4135-42. PubMed ID: 22864534 [TBL] [Abstract][Full Text] [Related]
14. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device. Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256 [TBL] [Abstract][Full Text] [Related]
15. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Lei KF; Wu MH; Hsu CW; Chen YD Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091 [TBL] [Abstract][Full Text] [Related]
16. Real-time monitoring of cell viability using direct electrical measurement with a patch-clamp microchip. Pathak P; Zhao H; Gong Z; Nie F; Zhang T; Cui K; Wang Z; Wong ST; Que L Biomed Microdevices; 2011 Oct; 13(5):949-53. PubMed ID: 21698381 [TBL] [Abstract][Full Text] [Related]
17. Cell-based screening approach for antitumor drug leads which exploits sensitivity differences between normal and cancer cells: identification of two novel cell-cycle inhibitors. Vassilev LT; Kazmer S; Marks IM; Pezzoni G; Sala F; Mischke SG; Foley L; Berthel SJ Anticancer Drug Des; 2001 Feb; 16(1):7-17. PubMed ID: 11762646 [TBL] [Abstract][Full Text] [Related]
18. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Wu N; Zhu Y; Brown S; Oakeshott J; Peat TS; Surjadi R; Easton C; Leech PW; Sexton BA Lab Chip; 2009 Dec; 9(23):3391-8. PubMed ID: 19904406 [TBL] [Abstract][Full Text] [Related]
19. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449 [TBL] [Abstract][Full Text] [Related]
20. Erythropoietin fails to interfere with the antiproliferative and cytotoxic effects of antitumor drugs. Gewirtz DA; Di X; Walker TD; Sawyer ST Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2232-8. PubMed ID: 16609039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]