BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 20979372)

  • 1. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies.
    Ryoo SR; Kim YK; Kim MH; Min DH
    ACS Nano; 2010 Nov; 4(11):6587-98. PubMed ID: 20979372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the mechanics and nanotopography of biocompatible scaffolds through dielectrophoresis with carbon nanotubes.
    Lu YL; Cheng CM; LeDuc PR; Ho MS
    Electrophoresis; 2008 Aug; 29(15):3123-7. PubMed ID: 18615410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites.
    Fan H; Wang L; Zhao K; Li N; Shi Z; Ge Z; Jin Z
    Biomacromolecules; 2010 Sep; 11(9):2345-51. PubMed ID: 20687549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.
    Lin F; Du F; Huang J; Chau A; Zhou Y; Duan H; Wang J; Xiong C
    Colloids Surf B Biointerfaces; 2016 Oct; 146():785-93. PubMed ID: 27451366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells.
    Lee J; Chu BH; Chen KH; Ren F; Lele TP
    Biomaterials; 2009 Sep; 30(27):4488-93. PubMed ID: 19515416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing live cells with nanocarbon substrates.
    Agarwal S; Zhou X; Ye F; He Q; Chen GC; Soo J; Boey F; Zhang H; Chen P
    Langmuir; 2010 Feb; 26(4):2244-7. PubMed ID: 20099791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing.
    Zhang Y; Wang B; Meng X; Sun G; Gao C
    Ann Biomed Eng; 2011 Jan; 39(1):414-26. PubMed ID: 20824344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro.
    Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H
    J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces.
    Pennisi CP; Dolatshahi-Pirouz A; Foss M; Chevallier J; Fink T; Zachar V; Besenbacher F; Yoshida K
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):189-97. PubMed ID: 21435850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation.
    Campillo-Fernández AJ; Unger RE; Peters K; Halstenberg S; Santos M; Salmerón Sánchez M; Meseguer Dueñas JM; Monleón Pradas M; Gómez Ribelles JL; Kirkpatrick CJ
    Tissue Eng Part A; 2009 Jun; 15(6):1331-41. PubMed ID: 18976156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene and carbon nanotube nanocomposite for gene transfection.
    Hollanda LM; Lobo AO; Lancellotti M; Berni E; Corat EJ; Zanin H
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():288-98. PubMed ID: 24863227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube fibers are compatible with Mammalian cells and neurons.
    Dubin RA; Callegari G; Kohn J; Neimark A
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):11-4. PubMed ID: 18334451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability.
    Kim SH; Ha HJ; Ko YK; Yoon SJ; Rhee JM; Kim MS; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2007; 18(5):609-22. PubMed ID: 17550662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene for improved femtosecond laser based pluripotent stem cell transfection.
    Mthunzi P; He K; Ngcobo S; Khanyile T; Warner JH
    J Biophotonics; 2014 May; 7(5):351-62. PubMed ID: 23996967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations.
    Santos CM; Mangadlao J; Ahmed F; Leon A; Advincula RC; Rodrigues DF
    Nanotechnology; 2012 Oct; 23(39):395101. PubMed ID: 22962260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering.
    Edwards SL; Church JS; Werkmeister JA; Ramshaw JA
    Biomaterials; 2009 Mar; 30(9):1725-31. PubMed ID: 19124155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide: a nonspecific enhancer of cellular growth.
    Ruiz ON; Fernando KA; Wang B; Brown NA; Luo PG; McNamara ND; Vangsness M; Sun YP; Bunker CE
    ACS Nano; 2011 Oct; 5(10):8100-7. PubMed ID: 21932790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.