These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20979485)

  • 21. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review.
    Walker E; Hayes W; Bockenhauer D
    Best Pract Res Clin Endocrinol Metab; 2024 Mar; 38(2):101843. PubMed ID: 38042745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Renal tubular acidosis].
    Seki G; Horita S; Suzuki M; Yamada H
    Nihon Jinzo Gakkai Shi; 2011; 53(2):173-6. PubMed ID: 21516702
    [No Abstract]   [Full Text] [Related]  

  • 23. Evidence of a parathyroid hormone-independent chronic effect of estrogen on renal phosphate handling and sodium-dependent phosphate cotransporter type IIa expression.
    Guttmann-Rubinstein L; Lichtstein D; Ilani A; Gal-Moscovici A; Scherzer P; Rubinger D
    Horm Metab Res; 2010 Apr; 42(4):230-6. PubMed ID: 20119884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel heterozygous mutation c.680A>G (p. N227S) in SLC34A1 gene leading to autosomal dominant hypophosphatemia: A case report.
    Chen X; Xie Y; Wan S; Xu J; Cai B; Zhang Y; Yu X
    Medicine (Baltimore); 2019 May; 98(20):e15617. PubMed ID: 31096470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate handling: new genes, new molecules.
    Prié D; Torres PU; Friedlander G
    Horm Res Paediatr; 2011; 76 Suppl 1():71-5. PubMed ID: 21778753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative promoters and renal cell-specific regulation of the mouse type IIa sodium-dependent phosphate cotransporter gene.
    Yamamoto H; Tani Y; Kobayashi K; Taketani Y; Sato T; Arai H; Morita K; Miyamoto K; Pike JW; Kato S; Takeda E
    Biochim Biophys Acta; 2005 Dec; 1732(1-3):43-52. PubMed ID: 16380173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Akt2/PKBbeta-sensitive regulation of renal phosphate transport.
    Kempe DS; Ackermann TF; Boini KM; Klaus F; Umbach AT; Dërmaku-Sopjani M; Judenhofer MS; Pichler BJ; Capuano P; Stange G; Wagner CA; Birnbaum MJ; Pearce D; Föller M; Lang F
    Acta Physiol (Oxf); 2010 Sep; 200(1):75-85. PubMed ID: 20236253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose transporter protein syndromes.
    De Vivo DC; Wang D; Pascual JM; Ho YY
    Int Rev Neurobiol; 2002; 51():259-88. PubMed ID: 12420362
    [No Abstract]   [Full Text] [Related]  

  • 29. [Renal hypophosphatemia:pathophysiology and treatment].
    Sekine T
    Clin Calcium; 2016 Feb; 26(2):284-94. PubMed ID: 26813509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets.
    Razali NN; Hwu TT; Thilakavathy K
    J Pediatr Endocrinol Metab; 2015 Sep; 28(9-10):1009-17. PubMed ID: 25894638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2.
    Chau H; El-Maadawy S; McKee MD; Tenenhouse HS
    J Bone Miner Res; 2003 Apr; 18(4):644-57. PubMed ID: 12674325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells.
    Ito M; Sakurai A; Hayashi K; Ohi A; Kangawa N; Nishiyama T; Sugino S; Uehata Y; Kamahara A; Sakata M; Tatsumi S; Kuwahata M; Taketani Y; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F243-54. PubMed ID: 20410212
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximal tubular handling of phosphate: A molecular perspective.
    Forster IC; Hernando N; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unchanged expression of the sodium-dependent phosphate cotransporter NaPi-IIa despite diurnal changes in renal phosphate excretion.
    Bielesz B; Bacic D; Honegger K; Biber J; Murer H; Wagner CA
    Pflugers Arch; 2006 Sep; 452(6):683-9. PubMed ID: 16710700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New concepts in pathogenesis of renal hypophosphatemic syndromes.
    Rastegar A
    Iran J Kidney Dis; 2009 Jan; 3(1):1-6. PubMed ID: 19377250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Differential diagnosis of rickets-like diseases in children].
    Shilov AV; Novikov PV
    Pediatriia; 1979 Sep; (9):65-70. PubMed ID: 226927
    [No Abstract]   [Full Text] [Related]  

  • 38. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter.
    Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H
    Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation.
    Kruse K; Woelfel D; Strom TM
    Horm Res; 2001; 55(6):305-8. PubMed ID: 11805436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular genetics of mineral metabolic disorders.
    Thakker RV
    J Inherit Metab Dis; 1992; 15(4):592-609. PubMed ID: 1528019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.