These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20981244)

  • 1. Order-free co-regionalized areal data models with application to multiple-disease mapping.
    Jin X; Banerjee S; Carlin BP
    J R Stat Soc Series B Stat Methodol; 2007 Nov; 69(5):817-838. PubMed ID: 20981244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized hierarchical multivariate CAR models for areal data.
    Jin X; Carlin BP; Banerjee S
    Biometrics; 2005 Dec; 61(4):950-61. PubMed ID: 16401268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.
    MacNab YC
    Stat Methods Med Res; 2016 Aug; 25(4):1118-44. PubMed ID: 27566769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining Boundary Effects in Areally Referenced Spatial Data Using the Bayesian Information Criterion.
    Li P; Banerjee S; McBean AM
    Geoinformatica; 2011 Jul; 15(3):435-454. PubMed ID: 21643463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Data Analysis.
    Banerjee S
    Annu Rev Public Health; 2016; 37():47-60. PubMed ID: 26789381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian latent process spatiotemporal regression model for areal count data.
    Utazi CE; Afuecheta EO; Nnanatu CC
    Spat Spatiotemporal Epidemiol; 2018 Jun; 25():25-37. PubMed ID: 29751890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of spatio-temporal model to estimate burden of diseases, injuries and risk factors in Iran 1990 - 2013.
    Parsaeian M; Farzadfar F; Zeraati H; Mahmoudi M; Rahimighazikalayeh G; Navidi I; Niakan Kalhori SR; Mohammad K; Jafari Khaledi M
    Arch Iran Med; 2014 Jan; 17(1):28-33. PubMed ID: 24444062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical multivariate directed acyclic graph autoregressive models for spatial diseases mapping.
    Gao L; Datta A; Banerjee S
    Stat Med; 2022 Jul; 41(16):3057-3075. PubMed ID: 35708210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores.
    Neelon B; Gelfand AE; Miranda ML
    J R Stat Soc Ser C Appl Stat; 2014 Nov; 63(5):737-761. PubMed ID: 26401059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian wombling for spatial point processes.
    Liang S; Banerjee S; Carlin BP
    Biometrics; 2009 Dec; 65(4):1243-53. PubMed ID: 19302408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skew-elliptical spatial random effect modeling for areal data with application to mapping health utilization rates.
    Nathoo FS; Ghosh P
    Stat Med; 2013 Jan; 32(2):290-306. PubMed ID: 22815268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models.
    Finley AO; Banerjee S; Carlin BP
    J Stat Softw; 2007 Apr; 19(4):1-24. PubMed ID: 21494410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping.
    Torabi M
    Biom J; 2016 Sep; 58(5):1138-50. PubMed ID: 27374632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixtures of Polya trees for flexible spatial frailty survival modelling.
    Zhao L; Hanson TE; Carlin BP
    Biometrika; 2009 Jun; 96(2):263-276. PubMed ID: 19779579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Models for Detecting Difference Boundaries in Areal Data.
    Li P; Banerjee S; Hanson TA; McBean AM
    Stat Sin; 2015 Jan; 25(1):385-402. PubMed ID: 31656386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian hierarchical modeling for bivariate multiscale spatial data with application to blood test monitoring.
    Zhou S; Bradley JR
    Spat Spatiotemporal Epidemiol; 2024 Aug; 50():100661. PubMed ID: 39181601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spatial bivariate probit model for correlated binary data with application to adverse birth outcomes.
    Neelon B; Anthopolos R; Miranda ML
    Stat Methods Med Res; 2014 Apr; 23(2):119-33. PubMed ID: 22599322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling Strategies for Fast Updating of Gaussian Markov Random Fields.
    Brown DA; McMahan CS; Self SW
    Am Stat; 2021; 75(1):52-65. PubMed ID: 33716305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proper multivariate conditional autoregressive models for spatial data analysis.
    Gelfand AE; Vounatsou P
    Biostatistics; 2003 Jan; 4(1):11-25. PubMed ID: 12925327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear models of coregionalization for multivariate lattice data: a general framework for coregionalized multivariate CAR models.
    MacNab YC
    Stat Med; 2016 Sep; 35(21):3827-50. PubMed ID: 27091685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.