These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20981246)

  • 1. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.
    Borazjani I; Ge L; Sotiropoulos F
    J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.
    Asgharzadeh H; Borazjani I
    J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems.
    Monteleone A; Di Leonardo S; Napoli E; Burriesci G
    Comput Methods Programs Biomed; 2024 Mar; 245():108034. PubMed ID: 38244340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixed-Point Fluid structure interaction analysis BASED ON geometrically exact approach.
    Yu M; Nie X; Yang G; Zhong P
    Sci Rep; 2020 Jun; 10(1):10322. PubMed ID: 32587278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical stability of partitioned approach in fluid-structure interaction for a deformable thin-walled vessel.
    Wong KK; Thavornpattanapong P; Cheung SC; Tu J
    Comput Math Methods Med; 2013; 2013():638519. PubMed ID: 24222785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.
    Kamensky D; Hsu MC; Schillinger D; Evans JA; Aggarwal A; Bazilevs Y; Sacks MS; Hughes TJ
    Comput Methods Appl Mech Eng; 2015 Feb; 284():1005-1053. PubMed ID: 25541566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eulerian simulation of complex suspensions and biolocomotion in three dimensions.
    Lin YL; Derr NJ; Rycroft CH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.