These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 20981435)
1. Intraobserver and interobserver repeatability of ocular components measurement in cataract eyes using a new optical low coherence reflectometer. Bjeloš Rončević M; Bušić M; Cima I; Kuzmanović Elabjer B; Bosnar D; Miletić D Graefes Arch Clin Exp Ophthalmol; 2011 Jan; 249(1):83-7. PubMed ID: 20981435 [TBL] [Abstract][Full Text] [Related]
2. Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Bjeloš Rončević M; Bušić M; Cima I; Kuzmanović Elabjer B; Bosnar D; Miletić D Graefes Arch Clin Exp Ophthalmol; 2011 Jan; 249(1):69-75. PubMed ID: 20853004 [TBL] [Abstract][Full Text] [Related]
3. Comparison of a new optical biometry with an optical low-coherence reflectometry for ocular biometry. Güler E; Kulak AE; Totan Y; Yuvarlak A; Hepşen İF Cont Lens Anterior Eye; 2016 Oct; 39(5):336-41. PubMed ID: 27344235 [TBL] [Abstract][Full Text] [Related]
4. Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low-coherence reflectometer and keratometer. Shammas HJ; Hoffer KJ Am J Ophthalmol; 2012 Jan; 153(1):55-61.e2. PubMed ID: 21907967 [TBL] [Abstract][Full Text] [Related]
5. Comparison of immersion ultrasound, partial coherence interferometry, and low coherence reflectometry for ocular biometry in cataract patients. Montés-Micó R; Carones F; Buttacchio A; Ferrer-Blasco T; Madrid-Costa D J Refract Surg; 2011 Sep; 27(9):665-71. PubMed ID: 21323302 [TBL] [Abstract][Full Text] [Related]
6. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. Huang J; Savini G; Wu F; Yu X; Yang J; Yu A; Yu Y; Wang Q J Cataract Refract Surg; 2015 Oct; 41(10):2233-41. PubMed ID: 26703300 [TBL] [Abstract][Full Text] [Related]
7. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. Kunert KS; Peter M; Blum M; Haigis W; Sekundo W; Schütze J; Büehren T J Cataract Refract Surg; 2016 Jan; 42(1):76-83. PubMed ID: 26948781 [TBL] [Abstract][Full Text] [Related]
8. Assessing the Validity of Measurements of Swept-source and Partial Coherence Interferometry Devices in Cataract Patients. Ghaffari R; Mahmoudzadeh R; Mohammadi SS; Salabati M; Latifi G; Ghassemi H Optom Vis Sci; 2019 Oct; 96(10):745-750. PubMed ID: 31592957 [TBL] [Abstract][Full Text] [Related]
9. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Rohrer K; Frueh BE; Wälti R; Clemetson IA; Tappeiner C; Goldblum D Ophthalmology; 2009 Nov; 116(11):2087-92. PubMed ID: 19744720 [TBL] [Abstract][Full Text] [Related]
10. Reproducibility of ocular biometry with a new noncontact optical low-coherence reflectometer in children. Şahin A; Gürsoy H; Başmak H; Yildirim N; Usalp Z; Çolak E Eur J Ophthalmol; 2011; 21(2):194-8. PubMed ID: 20853265 [TBL] [Abstract][Full Text] [Related]
11. Agreement of ocular biometry measurements between 2 biometers. Yeu E J Cataract Refract Surg; 2019 Aug; 45(8):1130-1134. PubMed ID: 31279621 [TBL] [Abstract][Full Text] [Related]
12. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. Shammas HJ; Ortiz S; Shammas MC; Kim SH; Chong C J Cataract Refract Surg; 2016 Jan; 42(1):50-61. PubMed ID: 26948778 [TBL] [Abstract][Full Text] [Related]
13. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. Li J; Chen H; Savini G; Lu W; Yu X; Bao F; Wang Q; Huang J J Cataract Refract Surg; 2016 Jan; 42(1):68-75. PubMed ID: 26948780 [TBL] [Abstract][Full Text] [Related]
14. Precision (repeatability and reproducibility) of ocular parameters obtained by the Tomey OA-2000 biometer compared to the IOLMaster in healthy eyes. Hua Y; Qiu W; Xiao Q; Wu Q PLoS One; 2018; 13(2):e0193023. PubMed ID: 29486009 [TBL] [Abstract][Full Text] [Related]
15. Repeatability and reproducibility of a new optical biometer in normal and keratoconic eyes. Yağcı R; Güler E; Kulak AE; Erdoğan BD; Balcı M; Hepşen İF J Cataract Refract Surg; 2015 Jan; 41(1):171-7. PubMed ID: 25532643 [TBL] [Abstract][Full Text] [Related]
16. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. Srivannaboon S; Chirapapaisan C; Chonpimai P; Loket S J Cataract Refract Surg; 2015 Oct; 41(10):2224-32. PubMed ID: 26703299 [TBL] [Abstract][Full Text] [Related]
17. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. Srivannaboon S; Chirapapaisan C; Chonpimai P; Koodkaew S J Cataract Refract Surg; 2014 May; 40(5):709-15. PubMed ID: 24656166 [TBL] [Abstract][Full Text] [Related]
18. Performance of three biometry devices in patients with different grades of age-related cataract. Mylonas G; Sacu S; Buehl W; Ritter M; Georgopoulos M; Schmidt-Erfurth U Acta Ophthalmol; 2011 May; 89(3):e237-41. PubMed ID: 21310011 [TBL] [Abstract][Full Text] [Related]
19. Feasibility and repeatability of ocular biometry measured with Lenstar LS 900 in a large group of children and adolescents. Rauscher FG; Hiemisch A; Kiess W; Michael R Ophthalmic Physiol Opt; 2021 May; 41(3):512-522. PubMed ID: 33772832 [TBL] [Abstract][Full Text] [Related]