These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20981474)

  • 1. A dynamic mechanical thermal analysis study of the viscoelastic properties and glass transition temperature behaviour of bioresorbable polymer matrix nanocomposites.
    Wilberforce SI; Best SM; Cameron RE
    J Mater Sci Mater Med; 2010 Dec; 21(12):3085-93. PubMed ID: 20981474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the thermal and dynamic mechanical behaviour of quenched and annealed bioresorbable poly-L-lactide/α-tricalcium phosphate nanocomposites.
    Wilberforce SI; Finlayson CE; Best SM; Cameron RE
    Acta Biomater; 2011 May; 7(5):2176-84. PubMed ID: 21315187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mechanical thermal properties of the dental light-cured nanohybrid composite Kalore, GC: effect of various food/oral simulating liquids.
    Sideridou ID; Vouvoudi EC; Adamidou EA
    Dent Mater; 2015 Feb; 31(2):154-61. PubMed ID: 25523943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and cure-time distribution of dynamic-mechanical properties of a dimethacrylate nano-composite.
    Ilie N; Hickel R; Watts DC
    Dent Mater; 2009 Mar; 25(3):411-8. PubMed ID: 19124150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of food/oral-simulating liquids on dynamic mechanical thermal properties of dental nanohybrid light-cured resin composites.
    Vouvoudi EC; Sideridou ID
    Dent Mater; 2013 Aug; 29(8):842-50. PubMed ID: 23735751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L-lactide-co-glycolide)/α-tricalcium phosphate nanocomposites.
    Wilberforce SI; Finlayson CE; Best SM; Cameron RE
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1081-9. PubMed ID: 21783117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding.
    Yu J; Qiu Z
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimuli-responsive mechanically adaptive polymer nanocomposites.
    Shanmuganathan K; Capadona JR; Rowan SJ; Weder C
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):165-74. PubMed ID: 20305827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Nanoporous Cellulose Gels as a Flexible Reinforcement Matrix for Polymer Nanocomposites.
    Shi Z; Huang J; Liu C; Ding B; Kuga S; Cai J; Zhang L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22990-8. PubMed ID: 26397710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cellulose composites loaded with SiO
    Sheykhnazari S; Tabarsa T; Ashori A; Ghanbari A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):672-677. PubMed ID: 27637448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature on the viscoelastic properties of nano-hybrid composites.
    Papadogiannis DY; Lakes RS; Papadogiannis Y; Palaghias G; Helvatjoglu-Antoniades M
    Dent Mater; 2008 Feb; 24(2):257-66. PubMed ID: 17640723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological and thermal properties of polylactide/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R
    J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.
    Iijima M; Kohda N; Kawaguchi K; Muguruma T; Ohta M; Naganishi A; Murakami T; Mizoguchi I
    Eur J Orthod; 2015 Dec; 37(6):665-70. PubMed ID: 25788333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose whisker/epoxy resin nanocomposites.
    Tang L; Weder C
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1073-80. PubMed ID: 20423128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites.
    Makhatha ME; Ray SS; Hato J; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1679-89. PubMed ID: 18572565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites.
    Ilie N; Hickel R
    Dent Mater; 2009 Jun; 25(6):810-9. PubMed ID: 19286247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.
    Bennett SM; Arumugam M; Wilberforce S; Enea D; Rushton N; Zhang XC; Best SM; Cameron RE; Brooks RA
    Acta Biomater; 2016 Nov; 45():340-348. PubMed ID: 27567963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive evaluation of mechanical properties of poly (vinyl) alcohol-hydroxyapatite nanocomposites.
    Nayar S; Sagar SP; Guha A
    J Mater Sci Mater Med; 2010 Apr; 21(4):1099-102. PubMed ID: 20044775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.