These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20981576)

  • 1. Incorporation of in silico biodegradability screening in early drug development--a feasible approach?
    Steger-Hartmann T; Länge R; Heuck K
    Environ Sci Pollut Res Int; 2011 May; 18(4):610-9. PubMed ID: 20981576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting ready biodegradability of premanufacture notice chemicals.
    Boethling RS; Lynch DG; Thom GC
    Environ Toxicol Chem; 2003 Apr; 22(4):837-44. PubMed ID: 12685720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case.
    Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI
    J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Biowin, Bayes, and batteries to predict ready biodegradability.
    Boethling RS; Lynch DG; Jaworska JS; Tunkel JL; Thom GC; Webb S
    Environ Toxicol Chem; 2004 Apr; 23(4):911-20. PubMed ID: 15095886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assessment of biodegradability of quaternary carbon-containing fragrance compounds: comparison of experimental OECD screening test results and in silico prediction data.
    Seyfried M; Boschung A
    Environ Toxicol Chem; 2014 May; 33(5):1005-16. PubMed ID: 24453060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of experimental biodegradation data on pharmaceuticals and comparison with predictive BIOWIN models.
    Kılıç B; Çeçen F
    J Environ Manage; 2023 Oct; 344():118310. PubMed ID: 37329580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment on biodegradability prediction of tannery wastewater using EPI Suite BIOWIN model.
    Balakrishnan A; Kanchinadham SBK; Kalyanaraman C
    Environ Monit Assess; 2020 Oct; 192(11):732. PubMed ID: 33123797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico models for predicting ready biodegradability under REACH: a comparative study.
    Pizzo F; Lombardo A; Manganaro A; Benfenati E
    Sci Total Environ; 2013 Oct; 463-464():161-8. PubMed ID: 23796884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.
    Lim SJ; Fox P
    Sci Total Environ; 2014 Feb; 470-471():348-55. PubMed ID: 24144939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new in silico classification model for ready biodegradability, based on molecular fragments.
    Lombardo A; Pizzo F; Benfenati E; Manganaro A; Ferrari T; Gini G
    Chemosphere; 2014 Aug; 108():10-6. PubMed ID: 24875906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.
    Devillers J; Pandard P; Richard B
    SAR QSAR Environ Res; 2013; 24(12):979-93. PubMed ID: 24313438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External validation of EPIWIN biodegradation models.
    Posthumus R; Traas TP; Peijnenburg WJ; Hulzebos EM
    SAR QSAR Environ Res; 2005; 16(1-2):135-48. PubMed ID: 15844447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ready biodegradation estimation methods for fragrance materials.
    Boethling R
    Sci Total Environ; 2014 Nov; 497-498():60-67. PubMed ID: 25119791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling ready biodegradability of fragrance materials.
    Ceriani L; Papa E; Kovarich S; Boethling R; Gramatica P
    Environ Toxicol Chem; 2015 Jun; 34(6):1224-31. PubMed ID: 25663647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating biodegradation half-lives for use in chemical screening.
    Aronson D; Boethling R; Howard P; Stiteler W
    Chemosphere; 2006 Jun; 63(11):1953-60. PubMed ID: 16297427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing green derivatives of β-blocker Metoprolol: a tiered approach for green and sustainable pharmacy and chemistry.
    Rastogi T; Leder C; Kümmerer K
    Chemosphere; 2014 Sep; 111():493-9. PubMed ID: 24997957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartment-Specific Screening Tools for Persistence: Potential Role and Application in the Regulatory Context.
    Junker T; Coors A; Schüürmann G
    Integr Environ Assess Manag; 2019 May; 15(3):470-481. PubMed ID: 30638305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.
    Chen G; Li X; Chen J; Zhang YN; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Dec; 33(12):2688-93. PubMed ID: 25208514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the anaerobic degradation of six active pharmaceutical ingredients.
    Musson SE; Campo P; Tolaymat T; Suidan M; Townsend TG
    Sci Total Environ; 2010 Apr; 408(9):2068-74. PubMed ID: 20163824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico methods to predict drug toxicity.
    Roncaglioni A; Toropov AA; Toropova AP; Benfenati E
    Curr Opin Pharmacol; 2013 Oct; 13(5):802-6. PubMed ID: 23797035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.