BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20981758)

  • 1. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs.
    Tan W; Vinegoni C; Norman JJ; Desai TA; Boppart SA
    Microsc Res Tech; 2007 Apr; 70(4):361-71. PubMed ID: 17262787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging tissue engineering scaffolds using multiphoton microscopy.
    Sun Y; Tan HY; Lin SJ; Lee HS; Lin TY; Jee SH; Young TH; Lo W; Chen WL; Dong CY
    Microsc Res Tech; 2008 Feb; 71(2):140-5. PubMed ID: 17943985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking nanoparticles in three-dimensional tissue-engineered models using confocal laser scanning microscopy.
    Hearnden V; MacNeil S; Battaglia G
    Methods Mol Biol; 2011; 695():41-51. PubMed ID: 21042964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin.
    Smith LE; Bonesi M; Smallwood R; Matcher SJ; MacNeil S
    J Tissue Eng Regen Med; 2010 Dec; 4(8):652-8. PubMed ID: 20603865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.
    Holmes C; Tabrizian M; Bagnaninchi PO
    J Tissue Eng Regen Med; 2015 May; 9(5):641-5. PubMed ID: 23401413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note.
    Cuijpers VM; Walboomers XF; Jansen JA
    Tissue Eng Part C Methods; 2011 Jun; 17(6):663-8. PubMed ID: 21375392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing cells in three dimensions using confocal microscopy, image reconstruction and isosurface rendering: application to glial cells in mouse central nervous system.
    Morgan F; Barbarese E; Carson JH
    Scanning Microsc; 1992 Jun; 6(2):345-56; discussion 356-7. PubMed ID: 1281337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging.
    Jones AC; Milthorpe B; Averdunk H; Limaye A; Senden TJ; Sakellariou A; Sheppard AP; Sok RM; Knackstedt MA; Brandwood A; Rohner D; Hutmacher DW
    Biomaterials; 2004 Sep; 25(20):4947-54. PubMed ID: 15109855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography.
    Hsieh TM; Ng CW; Narayanan K; Wan AC; Ying JY
    Biomaterials; 2010 Oct; 31(30):7648-52. PubMed ID: 20667410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring sinew contraction during formation of tissue-engineered fibrin-based ligament constructs.
    Paxton JZ; Wudebwe UN; Wang A; Woods D; Grover LM
    Tissue Eng Part A; 2012 Aug; 18(15-16):1596-607. PubMed ID: 22439983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doppler optical coherence tomography for measuring flow in engineered tissue.
    Mason C; Markusen JF; Town MA; Dunnill P; Wang RK
    Biosens Bioelectron; 2004 Oct; 20(3):414-23. PubMed ID: 15494219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical aspects of OCT imaging in tissue engineering.
    Matcher SJ
    Methods Mol Biol; 2011; 695():261-80. PubMed ID: 21042978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring oxygen uptake in 3D tissue engineering scaffolds by phosphorescence quenching microscopy.
    Guaccio A; Netti PA
    Biotechnol Prog; 2010; 26(5):1494-500. PubMed ID: 20945496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering: a new frontier in physiological genomics.
    Petersen MC; Lazar J; Jacob HJ; Wakatsuki T
    Physiol Genomics; 2007 Dec; 32(1):28-32. PubMed ID: 17956999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions.
    Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y
    Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.