These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20981758)

  • 41. 3D reconstruction of histological sections: Application to mammary gland tissue.
    Arganda-Carreras I; Fernández-González R; Muñoz-Barrutia A; Ortiz-De-Solorzano C
    Microsc Res Tech; 2010 Oct; 73(11):1019-29. PubMed ID: 20232465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of phase correlation to the montage synthesis and three-dimensional reconstruction of large tissue volumes from confocal laser scanning microscopy.
    Slamani MA; Krol A; Beaumont J; Price RL; Coman IL; Lipson ED
    Microsc Microanal; 2006 Apr; 12(2):106-12. PubMed ID: 17481346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of bioreactors in maxillofacial tissue engineering.
    Depprich R; Handschel J; Wiesmann HP; Jäsche-Meyer J; Meyer U
    Br J Oral Maxillofac Surg; 2008 Jul; 46(5):349-54. PubMed ID: 18343545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells.
    Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y
    Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tissue engineering scaffolds based on photocured dimethacrylate polymers for in vitro optical imaging.
    Landis FA; Stephens JS; Cooper JA; Cicerone MT; Lin-Gibson S
    Biomacromolecules; 2006 Jun; 7(6):1751-7. PubMed ID: 16768394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of optical coherence tomography as an imaging modality in tissue engineering.
    Yang Y; Dubois A; Qin XP; Li J; El Haj A; Wang RK
    Phys Med Biol; 2006 Apr; 51(7):1649-59. PubMed ID: 16552095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic multicomponent engineered tissue reorganization and matrix deposition measured with an integrated nonlinear optical microscopy-optical coherence microscopy system.
    Bai Y; Lee PF; Gibbs HC; Bayless KJ; Yeh AT
    J Biomed Opt; 2014 Mar; 19(3):36014. PubMed ID: 24647972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring local cell viability in engineered tissues: a fast, quantitative, and nondestructive approach.
    Breuls RG; Mol A; Petterson R; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng; 2003 Apr; 9(2):269-81. PubMed ID: 12740089
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo imaging of mammalian cells: image acquisition and analysis.
    Swedlow JR; Andrews PD; Platani M
    Cold Spring Harb Protoc; 2009 Sep; 2009(9):pdb.ip70. PubMed ID: 20147261
    [No Abstract]   [Full Text] [Related]  

  • 52. In vivo imaging of mammalian cells: cell engineering and viability.
    Swedlow JR; Andrews PD; Platani M
    Cold Spring Harb Protoc; 2009 Sep; 2009(9):pdb.ip69. PubMed ID: 20147260
    [No Abstract]   [Full Text] [Related]  

  • 53. Multiscale iterative voting for differential analysis of stress response for 2D and 3D cell culture models.
    Han J; Chang H; Yang Q; Fontenay G; Groesser T; Barcellos-Hoff MH; Parvin B
    J Microsc; 2011 Mar; 241(3):315-26. PubMed ID: 21118235
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Opening the "White Box" in Tissue Engineering: Visualization of Cell Aggregates in Optically Scattering Scaffolds.
    Groot Nibbelink M; Daoudi K; Slegers S; Grootendorst D; Dantuma M; Steenbergen W; Karperien M; Manohar S; van Apeldoorn A
    Tissue Eng Part C Methods; 2016 Jun; 22(6):534-42. PubMed ID: 27056242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Digital imaging of stem cells by electron microscopy.
    Sathananthan AH; Nottola SA
    Methods Mol Biol; 2007; 407():21-41. PubMed ID: 18453246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imaging engineered tissues using structural and functional optical coherence tomography.
    Liang X; Graf BW; Boppart SA
    J Biophotonics; 2009 Nov; 2(11):643-55. PubMed ID: 19672880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noninvasive Optical Assessment of Implanted Engineered Tissues Correlates with Cytokine Secretion.
    Elahi SF; Lee SY; Lloyd WR; Chen LC; Kuo S; Zhou Y; Kim HM; Kennedy R; Marcelo C; Feinberg SE; Mycek MA
    Tissue Eng Part C Methods; 2018 Apr; 24(4):214-221. PubMed ID: 29448894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Digital image inpainting and microscopy imaging.
    Stanciu SG; Hristu R; Stanciu GA
    Microsc Res Tech; 2011 Nov; 74(11):1049-57. PubMed ID: 21563264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of vertical cell fluidity in a multilayered sheet of skeletal myoblasts.
    Kino-oka M; Ngo TX; Nagamori E; Takezawa Y; Miyake Y; Sawa Y; Saito A; Shimizu T; Okano T; Taya M
    J Biosci Bioeng; 2012 Jan; 113(1):128-31. PubMed ID: 22018737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scanning electron microscopy evaluation of endothelialized tissue-engineered constructs.
    Johnson SL
    Methods Mol Biol; 2013; 1001():325-40. PubMed ID: 23494441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.