These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 209864)

  • 1. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.
    Lothman E; Lamanna J; Cordingley G; Rosenthal M; Somjen G
    Brain Res; 1975 Apr; 88(1):15-36. PubMed ID: 164265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ.
    Rosenthal M; LaManna J; Yamada S; Younts W; Somjen G
    Brain Res; 1979 Feb; 162(1):113-27. PubMed ID: 761076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW; Somjen GG
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenytoin, electric, ionic, and metabolic responses in cortex and spinal cord.
    LaManna J; Lothman E; Rosenthal M; Somjen G; Younts W
    Epilepsia; 1977 Sep; 18(3):317-29. PubMed ID: 196841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
    Prokopová-Kubinová S; Syková E
    J Neurosci Res; 2000 Nov; 62(4):530-8. PubMed ID: 11070496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E
    J Exp Biol; 1981 Dec; 95():93-109. PubMed ID: 6278046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord.
    Jiménez I; Rudomín P; Solodkin M; Vyklický L
    J Neurophysiol; 1984 Nov; 52(5):921-40. PubMed ID: 6096522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat.
    Heinemann U; Lux HD
    Brain Res; 1977 Jan; 120(2):231-49. PubMed ID: 832122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium, neuroglia, and oxidative metabolism in central gray matter.
    Somjen GG; Rosenthal M; Cordingley G; LaManna J; Lothman E
    Fed Proc; 1976 May; 35(6):1266-71. PubMed ID: 177318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat.
    Heinemann U; Lux HD
    Brain Res; 1975 Jul; 93(1):63-76. PubMed ID: 1139318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat.
    Kríz N; Syková E; Ujec E; Vyklický L
    J Physiol; 1974 Apr; 238(1):1-15. PubMed ID: 4838796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1974 Aug; 52(4):852-71. PubMed ID: 4425984
    [No Abstract]   [Full Text] [Related]  

  • 15. Extracellular potassium concentration in chronic alumina cream foci of cats.
    Heinemann U; Dietzel I
    J Neurophysiol; 1984 Sep; 52(3):421-34. PubMed ID: 6090607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration.
    Dietzel I; Heinemann U; Hofmeier G; Lux HD
    Exp Brain Res; 1980; 40(4):432-9. PubMed ID: 6254790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between electrically induced slow negative potentials and changes in extracellular potassium concentrations in cerebral cortex of the cat.
    Ocherashvili E; Roitbak A
    Neurosci Lett; 1992 Feb; 136(1):72-4. PubMed ID: 1635669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study.
    Walton KD; Chesler M
    Neuroscience; 1988 Jun; 25(3):983-95. PubMed ID: 2457188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.