These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20998015)

  • 21. Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response?
    Fagioni M; Zolla L
    J Proteome Res; 2009 May; 8(5):2519-29. PubMed ID: 19290619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress.
    Yan J; Yu L; Xuan J; Lu Y; Lu S; Zhu W
    Sci Rep; 2016 Feb; 6():19473. PubMed ID: 26857466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants.
    Patel J; Singh M; Macarisin D; Sharma M; Shelton D
    Food Microbiol; 2013 Dec; 36(2):388-94. PubMed ID: 24010621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pre-harvest nitrogen and azoxystrobin application enhances raw product quality and post-harvest shelf-life of baby spinach (Spinacia oleracea L.).
    Conversa G; Bonasia A; Lazzizera C; Elia A
    J Sci Food Agric; 2014 Dec; 94(15):3263-72. PubMed ID: 24700092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some Factors Involved in Oxygen Evolution From Triturated Spinach Leaves.
    Boyle FP
    Science; 1948 Oct; 108(2805):359-60. PubMed ID: 17810998
    [No Abstract]   [Full Text] [Related]  

  • 26. Persistence of enterohaemorrhagic and nonpathogenic E. coli on spinach leaves and in rhizosphere soil.
    Patel J; Millner P; Nou X; Sharma M
    J Appl Microbiol; 2010 May; 108(5):1789-96. PubMed ID: 19878527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves.
    Zellnig G; Zechmann B; Perktold A
    Protoplasma; 2004 Jun; 223(2-4):221-7. PubMed ID: 15221528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.
    Obrador A; Gonzalez D; Alvarez JM
    J Agric Food Chem; 2013 May; 61(20):4692-701. PubMed ID: 23638953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inorganic polyphosphate in spinach leaves.
    MIYACHI S
    J Biochem; 1961 Oct; 50():367-71. PubMed ID: 14474776
    [No Abstract]   [Full Text] [Related]  

  • 30. Respiration and cell division in plants; oxygen consumption and cell division in the leaves of Ligustrum lucidum and Hedera helix.
    BEATTY AV
    Am J Bot; 1946 Feb; 33(2):145-8. PubMed ID: 20280141
    [No Abstract]   [Full Text] [Related]  

  • 31. Higher anthocyanin accumulation associated with higher transcription levels of anthocyanin biosynthesis genes in spinach.
    Cai X; Lin L; Wang X; Xu C; Wang Q
    Genome; 2018 Jul; 61(7):487-496. PubMed ID: 29787681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of coal mine dump contaminated soils on elemental uptake by Spinacia oleracea (spinach).
    Chunilall V; Kindness A; Jonnalagadda SB
    J Environ Sci Health B; 2006; 41(3):297-307. PubMed ID: 16484089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants.
    Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK
    Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shelf life and sensory characteristics of baby spinach subjected to electron beam irradiation.
    Neal JA; Booren B; Cisneros-Zevallos L; Miller RK; Lucia LM; Maxim JE; Castillo A
    J Food Sci; 2010 Aug; 75(6):S319-26. PubMed ID: 20722955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [VI. The action of carbon monoxide on respiration in green leaves].
    DUCET G; ROSENBERG AJ
    C R Hebd Seances Acad Sci; 1952 Jan; 234(5):549-51. PubMed ID: 14945098
    [No Abstract]   [Full Text] [Related]  

  • 36. The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves.
    EGGMAN L; SINGER SJ; WILDMAN SG
    J Biol Chem; 1953 Dec; 205(2):969-83. PubMed ID: 13129275
    [No Abstract]   [Full Text] [Related]  

  • 37. Assessment of antioxidant and antiproliferative properties of spinach plants grown under low oxygen availability.
    Fornaciari S; Milano F; Mussi F; Pinto-Sanchez L; Forti L; Buschini A; Arru L
    J Sci Food Agric; 2015 Feb; 95(3):490-6. PubMed ID: 24862450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of nitrobenzene by ferredoxin NADP oxidoreductase from spinach leaves.
    Shah MM; Campbell JA
    Biochem Biophys Res Commun; 1997 Dec; 241(3):794-6. PubMed ID: 9434788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid isolation of intact chloroplasts from spinach leaves.
    Joly D; Carpentier R
    Methods Mol Biol; 2011; 684():321-5. PubMed ID: 20960139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the cellular mechanism of recovery from freeze-thaw injury in spinach: possible role of aquaporins, heat shock proteins, dehydrin and antioxidant system.
    Chen K; Arora R
    Physiol Plant; 2014 Mar; 150(3):374-87. PubMed ID: 23981077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.