These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2100148)

  • 1. Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle.
    Robertson TA; Grounds MD; Mitchell CA; Papadimitriou JM
    J Struct Biol; 1990; 105(1-3):170-82. PubMed ID: 2100148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusion of myogenic cells to the newly sealed region of damaged myofibres in skeletal muscle regeneration.
    Robertson TA; Papadimitriou JM; Grounds MD
    Neuropathol Appl Neurobiol; 1993 Aug; 19(4):350-8. PubMed ID: 8232756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion between a myogenic cell in the satellite cell position and undamaged adult myofibre segments.
    Robertson TA; Papadimitriou JM; Grounds MD
    Experientia; 1992 Apr; 48(4):394-5. PubMed ID: 1582497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration.
    Park SY; Yun Y; Lim JS; Kim MJ; Kim SY; Kim JE; Kim IS
    Nat Commun; 2016 Mar; 7():10871. PubMed ID: 26972991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of desmin slightly prolongs myoblast proliferation and delays fusion in vivo in regenerating grafts of skeletal muscle.
    Smythe GM; Davies MJ; Paulin D; Grounds MD
    Cell Tissue Res; 2001 May; 304(2):287-94. PubMed ID: 11396722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galectin-1 is a novel factor that regulates myotube growth in regenerating skeletal muscles.
    Kami K; Senba E
    Curr Drug Targets; 2005 Jun; 6(4):395-405. PubMed ID: 16026258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses.
    Guillet-Deniau I; Leturque A; Girard J
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle regeneration involves macrophage-myoblast bonding.
    Ceafalan LC; Fertig TE; Popescu AC; Popescu BO; Hinescu ME; Gherghiceanu M
    Cell Adh Migr; 2018 May; 12(3):228-235. PubMed ID: 28759306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EM investigation of myoblast origin in regenerating hamster skeletal muscle explants.
    Naidoo PR
    J Struct Biol; 1992; 109(2):160-7. PubMed ID: 1288617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ultrastructure of the cells and DNA synthesis in skeletal muscle regeneration. A study of the regeneration of the frog sartorius muscle by an electron microscopic autoradiographic method].
    Rumiantsev PP; Dmitrieva EV; Seina NV
    Tsitologiia; 1977; 19(12):1333-9. PubMed ID: 601866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts.
    Eom YW; Lee JE; Yang MS; Jang IK; Kim HE; Lee DH; Kim YJ; Park WJ; Kong JH; Shim KY; Lee JI; Kim HS
    Biochem Biophys Res Commun; 2011 Apr; 408(1):167-73. PubMed ID: 21473854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminin alpha4 and integrin alpha6 are upregulated in regenerating dy/dy skeletal muscle: comparative expression of laminin and integrin isoforms in muscles regenerating after crush injury.
    Sorokin LM; Maley MA; Moch H; von der Mark H; von der Mark K; Cadalbert L; Karosi S; Davies MJ; McGeachie JK; Grounds MD
    Exp Cell Res; 2000 May; 256(2):500-14. PubMed ID: 10772822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies.
    Duxson MJ; Usson Y; Harris AJ
    Development; 1989 Dec; 107(4):743-50. PubMed ID: 2483685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures.
    Gorbe A; Krenacs T; Cook JE; Becker DL
    Exp Cell Res; 2007 Apr; 313(6):1135-48. PubMed ID: 17331498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.
    Pavlath GK; Thaloor D; Rando TA; Cheong M; English AW; Zheng B
    Dev Dyn; 1998 Aug; 212(4):495-508. PubMed ID: 9707323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myotube driven myogenic recruitment of cells during in vitro myogenesis.
    Breton M; Li ZL; Paulin D; Harris JA; Rieger F; Pinçon-Raymond M; Garcia L
    Dev Dyn; 1995 Feb; 202(2):126-36. PubMed ID: 7734731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD36 is required for myoblast fusion during myogenic differentiation.
    Park SY; Yun Y; Kim IS
    Biochem Biophys Res Commun; 2012 Nov; 427(4):705-10. PubMed ID: 23036201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myogenic cells of regenerating adult chicken muscle can fuse into myotubes after a single cell division in vivo.
    Grounds MD; McGeachie JK
    Exp Cell Res; 1989 Feb; 180(2):429-39. PubMed ID: 2914578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion.
    Mukai A; Hashimoto N
    Exp Cell Res; 2008 Jan; 314(2):387-97. PubMed ID: 18001711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannose receptor regulates myoblast motility and muscle growth.
    Jansen KM; Pavlath GK
    J Cell Biol; 2006 Jul; 174(3):403-13. PubMed ID: 16864654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.