These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 2100178)
1. Crystallin profiles of calf and bovine lens microsections, stained for free sulfhydryl groups and proteins. Bours J; Ahrend MH; Hockwin O Lens Eye Toxic Res; 1990; 7(3-4):531-45. PubMed ID: 2100178 [TBL] [Abstract][Full Text] [Related]
2. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA; Bours J; Utikal KJ Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796 [TBL] [Abstract][Full Text] [Related]
3. Staining of free sulfhydryl groups of proteins after separation by isoelectric focusing of Bio-Rad standards and lens crystallins. Bours J; Ahrend MH Anal Biochem; 1990 Nov; 190(2):244-8. PubMed ID: 1705395 [TBL] [Abstract][Full Text] [Related]
4. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining. Bours J; Ahrend MH; Utikal KJ Ophthalmic Res; 1998; 30(4):233-43. PubMed ID: 9667054 [TBL] [Abstract][Full Text] [Related]
5. The presence of a human UV filter within the lens represents an oxidative stress. Berry Y; Truscott RJ Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669 [TBL] [Abstract][Full Text] [Related]
6. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
7. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)]. Bours J; Hockwin O Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701 [TBL] [Abstract][Full Text] [Related]
8. The glycation of bovine lens betaL-, betaS- and gamma-crystallins demonstrated by isoelectric focusing and lectin staining. Ahrend MH; Bours J Exp Eye Res; 1997 Nov; 65(5):711-5. PubMed ID: 9367651 [TBL] [Abstract][Full Text] [Related]
9. Hydration properties of the molecular chaperone alpha-crystallin in the bovine lens. Babizhayev MA; Nikolayev GM; Goryachev SN; Bours J; Martin R Biochemistry (Mosc); 2003 Oct; 68(10):1145-55. PubMed ID: 14616086 [TBL] [Abstract][Full Text] [Related]
10. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175 [TBL] [Abstract][Full Text] [Related]
11. Protein profiles of microsections of the fetal and adult human lens during development and ageing. Bours J; Wegener A; Hofmann D; Födisch HJ; Hockwin O Mech Ageing Dev; 1990 May; 54(1):13-27. PubMed ID: 2195251 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
13. Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions. Cooper PG; Aquilina JA; Truscott RJ; Carver JA Exp Eye Res; 1994 Nov; 59(5):607-16. PubMed ID: 9492762 [TBL] [Abstract][Full Text] [Related]
14. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M; Nayak S; Rao BS Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392 [TBL] [Abstract][Full Text] [Related]
15. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Yan H; Lou MF; Fernando MR; Harding JJ Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401 [TBL] [Abstract][Full Text] [Related]
16. Interaction of lens alpha and gamma crystallins during aging of the bovine lens. Peterson J; Radke G; Takemoto L Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431 [TBL] [Abstract][Full Text] [Related]
17. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
18. Membrane association of proteins in the aging human lens: profound changes take place in the fifth decade of life. Friedrich MG; Truscott RJ Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4786-93. PubMed ID: 19458333 [TBL] [Abstract][Full Text] [Related]
19. Age-related variations in the distribution of crystallins within the bovine lens. Bessems GJ; De Man BM; Bours J; Hoenders HJ Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022 [TBL] [Abstract][Full Text] [Related]
20. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens. Kodama T; Kodama T; Horwitz J; Takemoto L Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]