BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 2100286)

  • 21. Effects of excitotoxic lesions of the basal forebrain on MFB self-stimulation.
    Arvanitogiannis A; Waraczynski M; Shizgal P
    Physiol Behav; 1996; 59(4-5):795-806. PubMed ID: 8778869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of positively rewarding behavior by the heightened aggressive state evoked either by pain-inducing stimulus or septal lesion.
    Kishore KR; Desiraju T
    Indian J Physiol Pharmacol; 1990 Apr; 34(2):125-9. PubMed ID: 2253981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential contribution of mesoaccumbens and mesohabenular dopamine to intracranial self-stimulation.
    Duchesne V; Boye SM
    Neuropharmacology; 2013 Jul; 70():43-50. PubMed ID: 23337257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of electrolytic lesions of the dorsal diencephalic conduction system on the distribution of Fos-like immunoreactivity induced by rewarding electrical stimulation.
    Fakhoury M; Voyer D; Lévesque D; Rompré PP
    Neuroscience; 2016 Oct; 334():214-225. PubMed ID: 27514573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI.
    Krebs RM; Heipertz D; Schuetze H; Duzel E
    Neuroimage; 2011 Sep; 58(2):647-55. PubMed ID: 21723396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitation of acquisition and performance of operant and spatial learning tasks in self-stimulation experienced rats.
    Yoganarasimha D; Shankaranarayana Rao BS; Raju TR; Meti BL
    Behav Neurosci; 1998 Jun; 112(3):725-9. PubMed ID: 9676988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lesion of the ventral tegmental area amplifies stimulation-induced Fos expression in the rat brain.
    Majkutewicz I; Cecot T; Jerzemowska G; Myślińska D; Plucińska K; Trojniar W; Wrona D
    Brain Res; 2010 Mar; 1320():95-105. PubMed ID: 20079346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.
    Simmons JM; Ackermann RF; Gallistel CR
    J Neurosci; 1998 Oct; 18(20):8515-33. PubMed ID: 9763494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMDA receptor antagonism in the ventral tegmental area impairs acquisition of reward-related learning.
    Zellner MR; Kest K; Ranaldi R
    Behav Brain Res; 2009 Feb; 197(2):442-9. PubMed ID: 18983876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA.
    Barbano MF; Wang HL; Morales M; Wise RA
    J Neurosci; 2016 Mar; 36(10):2975-85. PubMed ID: 26961951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential sensitivity of the caudal and rostral nucleus accumbens to the rewarding effects of a H1-histaminergic receptor blocker as measured with place-preference and self-stimulation behavior.
    Zimmermann P; Privou C; Huston JP
    Neuroscience; 1999; 94(1):93-103. PubMed ID: 10613500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats.
    Bals-Kubik R; Ableitner A; Herz A; Shippenberg TS
    J Pharmacol Exp Ther; 1993 Jan; 264(1):489-95. PubMed ID: 8093731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesencephalic substrate of reward: axonal connections.
    Boye SM; Rompré PP
    J Neurosci; 1996 May; 16(10):3511-20. PubMed ID: 8627384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior.
    Choudhary AG; Somalwar AR; Sagarkar S; Rale A; Sakharkar A; Subhedar NK; Kokare DM
    Brain Struct Funct; 2018 Apr; 223(3):1313-1328. PubMed ID: 29116427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience.
    Rao BS; Desiraju T; Meti BL; Raju TR
    Indian J Physiol Pharmacol; 1994 Jan; 38(1):23-8. PubMed ID: 8132239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation.
    Somalwar AR; Shelkar GP; Subhedar NK; Kokare DM
    Behav Brain Res; 2017 Jan; 317():340-349. PubMed ID: 27686026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats.
    Bruijnzeel AW; Corrie LW; Rogers JA; Yamada H
    Behav Brain Res; 2011 Jun; 219(2):254-64. PubMed ID: 21255613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anticipation of rewarding electrical brain stimulation evokes ultrasonic vocalization in rats.
    Burgdorf J; Knutson B; Panksepp J
    Behav Neurosci; 2000 Apr; 114(2):320-7. PubMed ID: 10832793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central sites involved in lateral hypothalamus conditioned neural responses to acoustic cues in the rat.
    Nakamura K; Ono T; Tamura R
    J Neurophysiol; 1987 Nov; 58(5):1123-48. PubMed ID: 3694247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ghrelin directly targets the ventral tegmental area to increase food motivation.
    Skibicka KP; Hansson C; Alvarez-Crespo M; Friberg PA; Dickson SL
    Neuroscience; 2011 Apr; 180():129-37. PubMed ID: 21335062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.