These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 2100303)
1. Magnesium transport in ferret red cells. Flatman PW; Smith LM J Physiol; 1990 Dec; 431():11-25. PubMed ID: 2100303 [TBL] [Abstract][Full Text] [Related]
2. Sodium-dependent magnesium uptake by ferret red cells. Flatman PW; Smith LM J Physiol; 1991 Nov; 443():217-30. PubMed ID: 1822527 [TBL] [Abstract][Full Text] [Related]
3. Magnesium transport in magnesium-loaded ferret red blood cells. Flatman PW; Smith LM Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of a Na+: Mg2+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs. Féray JC; Garay R Naunyn Schmiedebergs Arch Pharmacol; 1988 Sep; 338(3):332-7. PubMed ID: 3194041 [TBL] [Abstract][Full Text] [Related]
5. Reversibility of Na+/Mg2+ antiport in rat erythrocytes. Günther T; Vormann J Biochim Biophys Acta; 1995 Mar; 1234(1):105-10. PubMed ID: 7880850 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Na(+)-dependent Mg2+ efflux from Mg2(+)-loaded rat erythrocytes. Günther T; Vormann J; Höllriegl V Biochim Biophys Acta; 1990 Apr; 1023(3):455-61. PubMed ID: 2139797 [TBL] [Abstract][Full Text] [Related]
7. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes. Ebel H; Hollstein M; Günther T Biochim Biophys Acta; 2004 Dec; 1667(2):132-40. PubMed ID: 15581848 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. Günther T Miner Electrolyte Metab; 1993; 19(4-5):259-65. PubMed ID: 8264512 [TBL] [Abstract][Full Text] [Related]
9. An Na+-stimulated Mg2+-transport system in human red blood cells. Féray JC; Garay R Biochim Biophys Acta; 1986 Mar; 856(1):76-84. PubMed ID: 3955035 [TBL] [Abstract][Full Text] [Related]
10. Na+/Ca2+ antiport in cultured arterial smooth muscle cells. Inhibition by magnesium and other divalent cations. Smith JB; Cragoe EJ; Smith L J Biol Chem; 1987 Sep; 262(25):11988-94. PubMed ID: 3624244 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms, regulation and pathologic significance of Mg2+ efflux from erythrocytes. Günther T Magnes Res; 2006 Sep; 19(3):190-8. PubMed ID: 17172009 [TBL] [Abstract][Full Text] [Related]
12. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes. Féray JC; Garay R J Biol Chem; 1987 Apr; 262(12):5763-8. PubMed ID: 3571233 [TBL] [Abstract][Full Text] [Related]
13. Effect of external magnesium on intracellular free sodium: Na+ flux via Na+/Mg2+ antiport is masked by other Na+ transport systems in rat cardiac myocytes. Odblom MP; Handy RD Magnes Res; 2001 Mar; 14(1-2):3-9. PubMed ID: 11300619 [TBL] [Abstract][Full Text] [Related]
14. The effects of metabolism on Na(+)-K(+)-Cl- co-transport in ferret red cells. Flatman PW J Physiol; 1991 Jun; 437():495-510. PubMed ID: 1890646 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Mg(2+) efflux from rat erythrocytes non-loaded with Mg(2+). Ebel H; Günther T Biochim Biophys Acta; 1999 Oct; 1421(2):353-60. PubMed ID: 10518705 [TBL] [Abstract][Full Text] [Related]
16. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. Lüdi H; Schatzmann HJ J Physiol; 1987 Sep; 390():367-82. PubMed ID: 3443939 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a sodium-dependent magnesium efflux from magnesium-loaded rat pancreatic acinar cells. Wisdom DM; Geada MM; Singh J Exp Physiol; 1996 May; 81(3):367-74. PubMed ID: 8737071 [TBL] [Abstract][Full Text] [Related]