These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2100523)

  • 1. Fluorescence microscopy of the dynamics of supercoiling, folding, and condensation of bacterial chromosomes, induced by acridine orange.
    Bustamante C; Houseal TW; Beach DA; Maestre MF
    J Biomol Struct Dyn; 1990 Dec; 8(3):643-55. PubMed ID: 2100523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins.
    de Vries R
    Biochimie; 2010 Dec; 92(12):1715-21. PubMed ID: 20615449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation of DNA in situ in metaphase chromosomes induced by intercalating ligands and its relationship to chromosome banding.
    Darzynkiewicz Z; Kapuscinski J
    Cytometry; 1988 Jan; 9(1):7-18. PubMed ID: 3044712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denaturation and condensation of DNA in situ induced by acridine orange in relation to chromatin changes during growth and differentiation of Friend erythroleukemia cells.
    Darzynkiewicz Z; Traganos F; Kapuscinski J; Melamed MR
    Cytometry; 1985 May; 6(3):195-207. PubMed ID: 3858089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA secondary structure and Raman markers of supercoiling in Escherichia coli plasmid pUC19.
    Serban D; Benevides JM; Thomas GJ
    Biochemistry; 2002 Jan; 41(3):847-53. PubMed ID: 11790106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer induced condensation of DNA supercoils.
    Ramos JE; Neto JR; de Vries R
    J Chem Phys; 2008 Nov; 129(18):185102. PubMed ID: 19045430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercoiling-regulated liquid-crystalline packaging of topologically-constrained, nucleosome-free DNA molecules.
    Reich Z; Levin-Zaidman S; Gutman SB; Arad T; Minsky A
    Biochemistry; 1994 Nov; 33(47):14177-84. PubMed ID: 7524671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [An evaluation of the conformational changes in the superhelical DNA of eukaryotic cells by direct nucleoid fluorometry. II. The characteristics of the change in acridine orange fluorescence in studying the superhelical DNA of rat thymocytes].
    Reshchikov AM; Vashchenko VI; Komar VE
    Tsitologiia; 1991; 33(2):89-93. PubMed ID: 1926576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamic basis of a supercoiling-responsive DNA element.
    Bae SH; Yun SH; Sun D; Lim HM; Choi BS
    Nucleic Acids Res; 2006; 34(1):254-61. PubMed ID: 16414956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and function of the bacterial chromosome.
    Thanbichler M; Viollier PH; Shapiro L
    Curr Opin Genet Dev; 2005 Apr; 15(2):153-62. PubMed ID: 15797198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of supercoil domains and their reorganization by transcription.
    Deng S; Stein RA; Higgins NP
    Mol Microbiol; 2005 Sep; 57(6):1511-21. PubMed ID: 16135220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bacteria growth temperature on the distribution of supercoiled DNA and its thermal stability.
    Adamcík J; Víglaský V; Valle F; Antalík M; Podhradský D; Dietler G
    Electrophoresis; 2002 Sep; 23(19):3300-9. PubMed ID: 12373757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces?
    Woldringh CL; Jensen PR; Westerhoff HV
    FEMS Microbiol Lett; 1995 Sep; 131(3):235-42. PubMed ID: 7557335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro effects of acridine intercalation on RNA polymerase interactions with supercoiled DNA.
    Greene RS; Alderfer J; Munson BR
    Int J Biochem; 1983; 15(10):1231-9. PubMed ID: 6195030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation.
    Krajina BA; Spakowitz AJ
    Biophys J; 2016 Oct; 111(7):1339-1349. PubMed ID: 27705758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation.
    Broccoli S; Rallu F; Sanscartier P; Cerritelli SM; Crouch RJ; Drolet M
    Mol Microbiol; 2004 Jun; 52(6):1769-79. PubMed ID: 15186424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of physiological self-crowding of DNA on shape and biological properties of DNA molecules with various levels of supercoiling.
    Benedetti F; Japaridze A; Dorier J; Racko D; Kwapich R; Burnier Y; Dietler G; Stasiak A
    Nucleic Acids Res; 2015 Feb; 43(4):2390-9. PubMed ID: 25653164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology.
    Drolet M
    Mol Microbiol; 2006 Feb; 59(3):723-30. PubMed ID: 16420346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatins of low-protein content: special features of their compaction and condensation.
    Kellenberger E; Arnold-Schulz-Gahmen B
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):361-70. PubMed ID: 1478471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The differential fluorescence of bacteria stained with acridine orange and the effects of heat.
    Back JP; Kroll RG
    J Appl Bacteriol; 1991 Jul; 71(1):51-8. PubMed ID: 1716625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.