These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21007621)

  • 21. On-board recordings reveal no jamming avoidance in wild bats.
    Cvikel N; Levin E; Hurme E; Borissov I; Boonman A; Amichai E; Yovel Y
    Proc Biol Sci; 2015 Jan; 282(1798):20142274. PubMed ID: 25429017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W; Firzlaff U
    J Neurophysiol; 2017 Jun; 117(6):2113-2124. PubMed ID: 28275060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
    Geberl C; Brinkløv S; Wiegrebe L; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial memory and stereotypy of flight paths by big brown bats in cluttered surroundings.
    Barchi JR; Knowles JM; Simmons JA
    J Exp Biol; 2013 Mar; 216(Pt 6):1053-63. PubMed ID: 23447667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic Aposematism and Evasive Action in Select Chemically Defended Arctiine (Lepidoptera: Erebidae) Species: Nonchalant or Not?
    Dowdy NJ; Conner WE
    PLoS One; 2016; 11(4):e0152981. PubMed ID: 27096408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naïve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning.
    Barber JR; Chadwell BA; Garrett N; Schmidt-French B; Conner WE
    J Exp Biol; 2009 Jul; 212(Pt 14):2141-8. PubMed ID: 19561203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.
    Goerlitz HR; Genzel D; Wiegrebe L
    Behav Processes; 2012 Jan; 89(1):61-7. PubMed ID: 22085788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dolphin-inspired combined maneuvering and pinging for short-distance echolocation.
    Forsythe SE; Leinhos HA; Bandyopadhyay PR
    J Acoust Soc Am; 2008 Oct; 124(4):EL255-61. PubMed ID: 19062795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Echolocating bats use future-target information for optimal foraging.
    Fujioka E; Aihara I; Sumiya M; Aihara K; Hiryu S
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4848-52. PubMed ID: 27071082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensory challenges for trawling bats: Finding transient prey on water surfaces.
    Übernickel K; Simon R; Kalko EK; Tschapka M
    J Acoust Soc Am; 2016 Apr; 139(4):1914. PubMed ID: 27106338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SOME ANIMAL ACOUSTIC PROPERTIES. 2. OF ECHOES AND THEIR USES.
    SHAPIRO SL
    Eye Ear Nose Throat Mon; 1965 Aug; 44():76-8. PubMed ID: 14340624
    [No Abstract]   [Full Text] [Related]  

  • 32. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects.
    Genzel D; Geberl C; Dera T; Wiegrebe L
    J Exp Biol; 2012 Jul; 215(Pt 13):2226-35. PubMed ID: 22675183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats.
    Nakano R; Mason AC
    PLoS One; 2018; 13(8):e0202679. PubMed ID: 30125318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.
    Zhuang Q; Müller R
    Phys Rev Lett; 2006 Nov; 97(21):218701. PubMed ID: 17155779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bats pre-adapt sensory acquisition according to target distance prior to takeoff even in the presence of closer background objects.
    Amichai E; Yovel Y
    Sci Rep; 2017 Mar; 7(1):467. PubMed ID: 28352130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Experiments for individuation of the ultrasound-producing organ in bats by means of study of blind flight. I. Blind flight of bats and the problem of the site of production of ultrasounds].
    MOTTA MANNO G
    Boll Soc Ital Biol Sper; 1951 May; 27(5):859-62. PubMed ID: 14878885
    [No Abstract]   [Full Text] [Related]  

  • 38. [Experiments for individuation of the ultrasound-producing organ in bats by means of study of blind flight. II. Blind flight of bats after section of lower laryngeal nerves].
    MOTTA MANNO G
    Boll Soc Ital Biol Sper; 1951 May; 27(5):862-4. PubMed ID: 14878886
    [No Abstract]   [Full Text] [Related]  

  • 39. [Experiments for individuation of the ultrasound-producing organ in bats by means of study of blind flight. III. Blind flight of bats after lesions of the palatopharyngeal arches and of the aryepiglottic folds].
    MOTTA MANNO G
    Boll Soc Ital Biol Sper; 1951 May; 27(5):865-8. PubMed ID: 14878887
    [No Abstract]   [Full Text] [Related]  

  • 40. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.
    Warnecke M; Chiu C; Engelberg J; Moss CF
    Brain Behav Evol; 2015 Sep; 86(1):6-16. PubMed ID: 26398707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.