These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2101058)

  • 1. Stationarity and normality of distribution of rat cortical brain waves.
    Sameshima K; Fraga JL; Timo-Iaria C
    Braz J Med Biol Res; 1990; 23(10):1061-4. PubMed ID: 2101058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical activity of the posterior thalamic nucleus and the hippocampus during wakefulness and desynchronized sleep in the rat: a spectral analysis.
    Fernandez-Veiga M; Timo-Iaria C; Souza-Melo A; Fernandes-Veiga MF; Yamashita R; Sameshima K; Fraga JL
    Braz J Med Biol Res; 1990; 23(10):1045-9. PubMed ID: 2101055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neocortical spindling during wakefulness in the rat.
    Hoshino K; GuimarĂ£es-Toloi JR
    Braz J Med Biol Res; 1995 Mar; 28(3):337-42. PubMed ID: 8520528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cortico-striatal interrelations in the wakefulness-sleep cycle during the central nervous system dissolution].
    Oganesian GA
    Zh Evol Biokhim Fiziol; 1999; 35(5):384-8. PubMed ID: 10645614
    [No Abstract]   [Full Text] [Related]  

  • 5. Disturbances in sleep-waking pattern and cortical desynchronization after lateral hypothalamic damage: effect of the size of the lesion.
    Trojniar W; Jurkowlaniec E; Ozorowska T
    Acta Neurobiol Exp (Wars); 1990; 50(3):81-91. PubMed ID: 2248103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A comparative study of the organization of the circadian cycle of wakefulness-sleep in normal rats and rats with a genetic predisposition to audiogenic seizure attacks].
    Vataev SI; Oganesian GA
    Zh Evol Biokhim Fiziol; 1993; 29(5-6):540-9. PubMed ID: 7825382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [An EEG study of different behavioral states of freely moving dolphins].
    Mukhametov LM; Supin AIa
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(2):396-401. PubMed ID: 1210706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Corticostriatal relations in the waking-sleep cycle of normal rats and in pathology].
    Oganesian GA; Vataev SI; Titkov ES
    Ross Fiziol Zh Im I M Sechenova; 1997 Sep; 83(9):37-46. PubMed ID: 9487066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].
    Feng ZY; Zheng XX
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):276-80. PubMed ID: 12422874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat.
    Datta S; Patterson EH; Spoley EE
    J Neurosci Res; 2001 Oct; 66(1):109-16. PubMed ID: 11599007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of the instrumental and social environment on the structure of a sample of the waking-sleep cycle in the male Wistar rat: correlations with the changes in reticulocortical system excitability].
    Lambert JF; Truong-Ngoc A
    Agressologie; 1976; 17(1):19-25. PubMed ID: 962026
    [No Abstract]   [Full Text] [Related]  

  • 13. Differential responses of brain stem neurons during spontaneous and stimulation-induced desynchronization of the cortical eeg in freely moving cats.
    Mallick BN; Thankachan S; Islam F
    Sleep Res Online; 1998; 1(4):132-46. PubMed ID: 11382870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in the correlations between the cortical and subcortical brain structures of rats during a shift in the sleep phases].
    Titkov ES; Oganesian GA
    Zh Evol Biokhim Fiziol; 1993; 29(2):177-85. PubMed ID: 8317182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The role of the septal and entorhinal inputs in generating hippocampal electrical activity in the wakefulness-sleep cycle of the cat].
    Nachkebiia NG; Nachkebiia AIa; Oniani LT
    Neirofiziologiia; 1987; 19(5):622-30. PubMed ID: 3447062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the transcallosal, extracallosal and geniculate-cortical responses in the phases of sleep and wakefulness].
    Baldissera F; Cesa-Bianchi MG; Mancia M
    Boll Soc Ital Biol Sper; 1964 Dec; 40(24):Suppl:1866-8. PubMed ID: 5875452
    [No Abstract]   [Full Text] [Related]  

  • 17. Local functional state differences between rat cortical columns.
    Rector DM; Topchiy IA; Carter KM; Rojas MJ
    Brain Res; 2005 Jun; 1047(1):45-55. PubMed ID: 15882842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Direct cortical responses and the integrative activity of the brain].
    Chilingarian LI
    Usp Fiziol Nauk; 1983; 14(3):24-52. PubMed ID: 6353797
    [No Abstract]   [Full Text] [Related]  

  • 19. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neuronal steering system for wakefulness, sleep and consciousness].
    Hassler R
    Klin Anasthesiol Intensivther; 1979; 19():1-9. PubMed ID: 556581
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.