These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2101912)

  • 21. Compact but disordered states of RNA.
    Woodson SA
    Nat Struct Biol; 2000 May; 7(5):349-52. PubMed ID: 10802725
    [No Abstract]   [Full Text] [Related]  

  • 22. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of the hammerhead ribozyme.
    Hendry P; McCall MJ; Lockett TJ
    Nucleic Acids Symp Ser; 1995; (34):217-8. PubMed ID: 8841629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A kinetic and thermodynamic analysis of cleavage site mutations in the hammerhead ribozyme.
    Baidya N; Uhlenbeck OC
    Biochemistry; 1997 Feb; 36(5):1108-14. PubMed ID: 9033401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid desilylation of oligoribonucleotides at elevated temperatures: cleavage activity in ribozyme-substrate assays.
    Vinayak R; Andrus A; Hampel A
    Biomed Pept Proteins Nucleic Acids; 1995; 1(4):227-30. PubMed ID: 9346836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Mg2+ and the 2' OH of guanosine on steps required for substrate binding and reactivity with the Tetrahymena ribozyme reveal several local folding transitions.
    Li Y; Turner DH
    Biochemistry; 1997 Sep; 36(37):11131-9. PubMed ID: 9287156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site.
    Strobel SA; Cech TR
    Science; 1995 Feb; 267(5198):675-9. PubMed ID: 7839142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nucleotide sequence and metal ions at the active site on a short ribozyme activation.
    Sugimoto N; Ohmichi T
    Nucleic Acids Symp Ser; 1997; (37):299-300. PubMed ID: 9586118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
    Ikawa Y; Tsuda K; Matsumura S; Atsumi S; Inoue T
    Nucleic Acids Res; 2003 Mar; 31(5):1488-96. PubMed ID: 12595557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme.
    Bevilacqua PC; Li Y; Turner DH
    Biochemistry; 1994 Sep; 33(37):11340-8. PubMed ID: 7727385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Movement of the guide sequence during RNA catalysis by a group I ribozyme.
    Wang JF; Downs WD; Cech TR
    Science; 1993 Apr; 260(5107):504-8. PubMed ID: 7682726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics and kinetics for base-pair opening in the P1 duplex of the Tetrahymena group I ribozyme.
    Lee JH; Pardi A
    Nucleic Acids Res; 2007; 35(9):2965-74. PubMed ID: 17439958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
    Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA; McConnell TS; Zaug AJ; Noller HF; Cech TR
    Science; 1992 Jun; 256(5062):1420-4. PubMed ID: 1604316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.