These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 2102375)

  • 1. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta.
    Valentin K; Zetsche K
    Plant Mol Biol; 1990 Oct; 15(4):575-84. PubMed ID: 2102375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids.
    Valentin K; Zetsche K
    Mol Gen Genet; 1990 Jul; 222(2-3):425-30. PubMed ID: 2274041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the rubisco operon from the multicellular red alga Antithamnion spec.
    Kostrzewa M; Valentin K; Maid U; Radetzky R; Zetsche K
    Curr Genet; 1990 Dec; 18(5):465-9. PubMed ID: 2078870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute an operon on the plastome of a red alga.
    Valentin K; Zetsche K
    Curr Genet; 1989 Sep; 16(3):203-9. PubMed ID: 2598276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the Rubisco operon from prokaryotes to algae: structure and analysis of the rbcS gene of the brown alga Pylaiella littoralis.
    Assali NE; Martin WF; Sommerville CC; Loiseaux-de Goër S
    Plant Mol Biol; 1991 Oct; 17(4):853-63. PubMed ID: 1840691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural similarities between psbA genes from red and brown algae.
    Winhauer T; Jäger S; Valentin K; Zetsche K
    Curr Genet; 1991 Jul; 20(1-2):177-80. PubMed ID: 1934114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica.
    Morden CW; Golden SS
    J Mol Evol; 1991 May; 32(5):379-95. PubMed ID: 1904095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a composite phylogenetic origin of the plastid genome of the brown alga Pylaiella littoralis (L.) Kjellm.
    Assali NE; Mache R; Loiseaux-de Goër S
    Plant Mol Biol; 1990 Aug; 15(2):307-15. PubMed ID: 2103450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids.
    Le Corguillé G; Pearson G; Valente M; Viegas C; Gschloessl B; Corre E; Bailly X; Peters AF; Jubin C; Vacherie B; Cock JM; Leblanc C
    BMC Evol Biol; 2009 Oct; 9():253. PubMed ID: 19835607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the plastid and nuclear encoded CbbX proteins of Cyanidioschyzon merolae.
    Fujita K; Tanaka K; Sadaie Y; Ohta N
    Genes Genet Syst; 2008 Apr; 83(2):135-42. PubMed ID: 18506097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.
    Freshwater DW; Fredericq S; Butler BS; Hommersand MH; Chase MW
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7281-5. PubMed ID: 8041781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa--phylogenetic implications.
    Valentin K; Zetsche K
    Curr Genet; 1990 Oct; 18(3):199-202. PubMed ID: 2123417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread positive selection in the photosynthetic Rubisco enzyme.
    Kapralov MV; Filatov DA
    BMC Evol Biol; 2007 May; 7():73. PubMed ID: 17498284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta.
    Markowicz Y; Loiseaux-de Goër S
    Curr Genet; 1991 Nov; 20(5):427-30. PubMed ID: 1807834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species.
    Destombe C; Douglas SE
    Curr Genet; 1991 May; 19(5):395-8. PubMed ID: 1680570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus.
    Liaud MF; Valentin C; Martin W; Bouget FY; Kloareg B; Cerff R
    J Mol Evol; 1994 Apr; 38(4):319-27. PubMed ID: 8007000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new measure to study phylogenetic relations in the brown algal order Ectocarpales: the "codon impact parameter".
    Das S; Chakrabarti J; Ghosh Z; Sahoo S; Mallick B
    J Biosci; 2005 Dec; 30(5):699-709. PubMed ID: 16388144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids.
    Delwiche CF; Palmer JD
    Mol Biol Evol; 1996 Jul; 13(6):873-82. PubMed ID: 8754222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.