These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21024913)

  • 1. The assay of animal tissues for respiratory enzymes; cell structure in relation to fatty acid oxidation.
    POTTER VR
    J Biol Chem; 1946 May; 163():437-46. PubMed ID: 21024913
    [No Abstract]   [Full Text] [Related]  

  • 2. Analyzing lipid metabolism: activation and beta-oxidation of fatty acids.
    Wheeler PR
    Methods Mol Biol; 2009; 465():47-59. PubMed ID: 20560058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behaviour of enzymes concerned in fatty acid oxidation in the liver tissue of patients with gall-bladder cholesterol stones.
    VILLA L; DIOGUARDI N; AGOSTONI A; FIORELLI G
    Acta Med Scand; 1959 Jun; 164():241-3. PubMed ID: 13842270
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the aerobic oxidation of fatty acids by bacteria. II. Application of the technique of simultaneous adaptation to the study of the mechanism of fatty acid oxidation in Serratia marcescens.
    SILLIKER JH; RITTENBERG SC
    J Bacteriol; 1951 Jun; 61(6):661-73. PubMed ID: 14850425
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidation and synthesis of fatty acids in soluble enzyme systems of animal tissues.
    GREEN DE
    Clin Chem; 1955 Feb; 1(1):53-67. PubMed ID: 14364827
    [No Abstract]   [Full Text] [Related]  

  • 6. Fundamentals of oxidation and respiration.
    MICHAELIS L
    Am Sci; 1946 Oct; 34(4):573-96. PubMed ID: 20276840
    [No Abstract]   [Full Text] [Related]  

  • 7. Labile fatty acids of rat diaphragm muscle and their possible role as the major endogenous substrate for maintenance of respiration.
    NEPTUNE EM; SUDDUTH HC; FOREMAN DR
    J Biol Chem; 1959 Jul; 234(7):1659-60. PubMed ID: 13672940
    [No Abstract]   [Full Text] [Related]  

  • 8. [Guanosine triphosphate activation of enzyme systems of fatty acid oxidation. III].
    SACCHETTO M; ROSSI CR
    Experientia; 1959 Jan; 15(1):28-9. PubMed ID: 13619678
    [No Abstract]   [Full Text] [Related]  

  • 9. [DEMONSTRATION OF TRACES OF ACETONE IN THE BREATH IN MAN].
    WALTHER A; PAERISCH M
    Acta Biol Med Ger; 1964; 13():807-8. PubMed ID: 14308711
    [No Abstract]   [Full Text] [Related]  

  • 10. Peanut Sprout Extracts Attenuate Triglyceride Accumulation by Promoting Mitochondrial Fatty Acid Oxidation in Adipocytes.
    Seo SH; Jo SM; Kim J; Lee M; Lee Y; Kang I
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30862029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE INTERRELATIONSHIPS OF HORMONES, FATTY ACID AND GLUCOSE IN THE PROVISION OF ENERGY.
    RANDLE PJ
    Postgrad Med J; 1964 Aug; 40(466):457-63. PubMed ID: 14179899
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulatory mechanisms of cellular respiration. III. Enzyme distribution in the cell. Its influence on the metabolism of pyruvic acid by bakers' yeast.
    BARRON ES; ARDAO MI; HEARON M
    J Gen Physiol; 1950 Nov; 34(2):211-24. PubMed ID: 14824492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ribonuclease on respiration and mevalonic acid utilization in liver homogenates.
    GAMBLE W; WRIGHT LD
    Proc Soc Exp Biol Med; 1962 Feb; 109():403-5. PubMed ID: 13896558
    [No Abstract]   [Full Text] [Related]  

  • 14. Carbohydrate sparing of fatty acid oxidation. I. The relation of fatty acid chain length to the degree of sparing. II. The mechanism by which carbohydrate spares the oxidation of palmitic acid.
    LOSSOW WJ; CHAIKOFF IL
    Arch Biochem Biophys; 1955 Jul; 57(1):23-40. PubMed ID: 13239181
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
    Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A
    J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The assay of animal tissues for respiratory enzymes; the malic dehydrogenas system.
    POTTER VR
    J Biol Chem; 1946 Sep; 165(1):311-24. PubMed ID: 21001211
    [No Abstract]   [Full Text] [Related]  

  • 18. Some effects of d-tubocurarine on oxidations in mammalian tissues.
    FEATHERSTONE RM; GROSS EG
    Am J Physiol; 1947 Feb; 148(2):507-14. PubMed ID: 20284574
    [No Abstract]   [Full Text] [Related]  

  • 19. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MECHANISMS OF LIPID PEROXIDE FORMATION IN TISSUES. ROLE OF METALS AND HAEMATIN PROTEINS IN THE CATALYSIS OF THE OXIDATION UNSATURATED FATTY ACIDS.
    WILLS ED
    Biochim Biophys Acta; 1965 Apr; 98():238-51. PubMed ID: 14325327
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.