BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21029105)

  • 1. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.
    Heber U; Soni V; Strasser RJ
    Physiol Plant; 2011 May; 142(1):65-78. PubMed ID: 21029105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs.
    Heber U; Azarkovich M; Shuvalov V
    J Exp Bot; 2007; 58(11):2745-59. PubMed ID: 17609533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants.
    Kopecky J; Azarkovich M; Pfündel EE; Shuvalov VA; Heber U
    Plant Biol (Stuttg); 2005 Mar; 7(2):156-67. PubMed ID: 15822011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.
    Heber U; Bilger W; Shuvalov VA
    J Exp Bot; 2006; 57(12):2993-3006. PubMed ID: 16893979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching.
    Veerman J; Vasil'ev S; Paton GD; Ramanauskas J; Bruce D
    Plant Physiol; 2007 Nov; 145(3):997-1005. PubMed ID: 17827268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm).
    Heber U; Shuvalov VA
    Photosynth Res; 2005 Jun; 84(1-3):85-91. PubMed ID: 16049759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria.
    Heber U; Bilger W; Türk R; Lange OL
    New Phytol; 2010 Jan; 185(2):459-70. PubMed ID: 19863730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.
    Heber U; Bilger W; Bligny R; Lange OL
    Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens.
    Heber U
    Planta; 2008 Sep; 228(4):641-50. PubMed ID: 18587600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses to desiccation stress in lichens are different from those in their photobionts.
    Kosugi M; Arita M; Shizuma R; Moriyama Y; Kashino Y; Koike H; Satoh K
    Plant Cell Physiol; 2009 Apr; 50(4):879-88. PubMed ID: 19304738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation.
    Bukhov NG; Carpentier R
    Planta; 2003 Feb; 216(4):630-8. PubMed ID: 12569405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens.
    Heber U; Bukhov NG; Shuvalov VA; Kobayashi Y; Lange OL
    J Exp Bot; 2001 Oct; 52(363):1999-2006. PubMed ID: 11559735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants.
    Miyake C; Shinzaki Y; Miyata M; Tomizawa K
    Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay.
    Yamakawa H; Itoh S
    Biochemistry; 2013 Jul; 52(26):4451-9. PubMed ID: 23750703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching by chlorophyll cations in photosystem II.
    Schweitzer RH; Brudvig GW
    Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II.
    Barth C; Krause GH
    Planta; 2002 Dec; 216(2):273-9. PubMed ID: 12447541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.
    Barták M; Hájek J; Vráblíková H; Dubová J
    Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.
    Baker NR; Oxborough K; Lawson T; Morison JI
    J Exp Bot; 2001 Apr; 52(356):615-21. PubMed ID: 11373309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs.
    Heber U; Lange OL; Shuvalov VA
    J Exp Bot; 2006; 57(6):1211-23. PubMed ID: 16551690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoprotective mechanism of the non-target organism Arabidopsis thaliana to paraquat exposure.
    Moustaka J; Moustakas M
    Pestic Biochem Physiol; 2014 May; 111():1-6. PubMed ID: 24861926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.