BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 21029757)

  • 1. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli.
    Rehm BH; Mitsky TA; Steinbüchel A
    Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host.
    Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxy-fatty acid production in a Pseudomonas aeruginosa 42A2 PHA synthase mutant generated by directed mutagenesis.
    Torrego-Solana N; Martin-Arjol I; Bassas-Galia M; Diaz P; Manresa A
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2551-61. PubMed ID: 22083273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.
    Rojas-Rosas O; Villafaña-Rojas J; López-Dellamary FA; Nungaray-Arellano J; González-Reynoso O
    Can J Microbiol; 2007 Jul; 53(7):840-51. PubMed ID: 17898839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by Pseudomonas aeruginosa ATCC 10145.
    Chayabutra C; Ju LK
    Biotechnol Prog; 2001; 17(3):419-23. PubMed ID: 11386860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon.
    Gutiérrez-Gómez U; Soto-Aceves MP; Servín-González L; Soberón-Chávez G
    Biotechnol Lett; 2018 Dec; 40(11-12):1561-1566. PubMed ID: 30264296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation.
    Pham TH; Webb JS; Rehm BH
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3405-13. PubMed ID: 15470118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous inhibition of rhamnolipid and polyhydroxyalkanoic acid synthesis and biofilm formation in Pseudomonas aeruginosa by 2-bromoalkanoic acids: effect of inhibitor alkyl-chain-length.
    Gutierrez M; Choi MH; Tian B; Xu J; Rho JK; Kim MO; Cho YH; Yoon SC
    PLoS One; 2013; 8(9):e73986. PubMed ID: 24023921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Marsudi S; Unno H; Hori K
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
    Déziel E; Lépine F; Milot S; Villemur R
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Involvement of quorum-sensing in biosynthesis of polyhydroxyalkanoates in Pseudomonas aeruginosa].
    Xu C; Li M; Huang Y; Zhang Z; Bian Z; Song S
    Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):769-75. PubMed ID: 21866701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swinging effect of salicylic acid on the accumulation of polyhydroxyalkanoic acid (PHA) in Pseudomonas aeruginosa BM114 synthesizing both MCLandSCL-PHA.
    Rho JK; Choi MH; Shim JH; Lee SY; Woo MJ; Ko BS; Chi KW; Yoon SC
    J Microbiol Biotechnol; 2007 Dec; 17(12):2018-26. PubMed ID: 18167450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures.
    Lépine F; Déziel E; Milot S; Villemur R
    J Mass Spectrom; 2002 Jan; 37(1):41-6. PubMed ID: 11813309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis.
    Tavares LF; Silva PM; Junqueira M; Mariano DC; Nogueira FC; Domont GB; Freire DM; Neves BC
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1909-21. PubMed ID: 23053103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation.
    Chen CC; Riadi L; Suh SJ; Ohman DE; Ju LK
    J Biotechnol; 2005 Apr; 117(1):1-10. PubMed ID: 15831242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates.
    Chen JY; Song G; Chen GQ
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.