These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 21029963)

  • 1. Reverse vaccinology: developing vaccines in the era of genomics.
    Sette A; Rappuoli R
    Immunity; 2010 Oct; 33(4):530-41. PubMed ID: 21029963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse Vaccinology for Influenza A Virus: From Genome Sequencing to Vaccine Design.
    Di Salvatore V; Russo G; Pappalardo F
    Methods Mol Biol; 2023; 2673():401-410. PubMed ID: 37258929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural vaccinology starts to deliver.
    Dormitzer PR; Grandi G; Rappuoli R
    Nat Rev Microbiol; 2012 Dec; 10(12):807-13. PubMed ID: 23154260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse vaccinology.
    Mora M; Veggi D; Santini L; Pizza M; Rappuoli R
    Drug Discov Today; 2003 May; 8(10):459-64. PubMed ID: 12801798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaccinology in the genome era.
    Rinaudo CD; Telford JL; Rappuoli R; Seib KL
    J Clin Invest; 2009 Sep; 119(9):2515-25. PubMed ID: 19729849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets.
    Hassan A; Naz A; Obaid A; Paracha RZ; Naz K; Awan FM; Muhmmad SA; Janjua HA; Ahmad J; Ali A
    BMC Genomics; 2016 Sep; 17(1):732. PubMed ID: 27634541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of
    Soltan MA; Magdy D; Solyman SM; Hanora A
    OMICS; 2020 Apr; 24(4):195-204. PubMed ID: 32286190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse vaccinology: a genome-based approach for vaccine development.
    Masignani V; Rappuoli R; Pizza M
    Expert Opin Biol Ther; 2002 Dec; 2(8):895-905. PubMed ID: 12517268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing vaccines in the era of genomics: a decade of reverse vaccinology.
    Seib KL; Zhao X; Rappuoli R
    Clin Microbiol Infect; 2012 Oct; 18 Suppl 5():109-16. PubMed ID: 22882709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus.
    Fadaka AO; Sibuyi NRS; Martin DR; Goboza M; Klein A; Madiehe AM; Meyer M
    Sci Rep; 2021 Oct; 11(1):19707. PubMed ID: 34611250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design.
    Rappuoli R; Bottomley MJ; D'Oro U; Finco O; De Gregorio E
    J Exp Med; 2016 Apr; 213(4):469-81. PubMed ID: 27022144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New tools, new approaches and new ideas for vaccine development.
    De Groot AS; Moise L
    Expert Rev Vaccines; 2007 Apr; 6(2):125-7. PubMed ID: 17408360
    [No Abstract]   [Full Text] [Related]  

  • 14. Reverse vaccinology, a genome-based approach to vaccine development.
    Rappuoli R
    Vaccine; 2001 Mar; 19(17-19):2688-91. PubMed ID: 11257410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the state of the art of reverse vaccinology: predicting vaccine efficacy with the universal immune system simulator for influenza.
    Russo G; Crispino E; Maleki A; Di Salvatore V; Stanco F; Pappalardo F
    BMC Bioinformatics; 2023 Jun; 24(1):231. PubMed ID: 37271819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against
    Sanches RCO; Tiwari S; Ferreira LCG; Oliveira FM; Lopes MD; Passos MJF; Maia EHB; Taranto AG; Kato R; Azevedo VAC; Lopes DO
    Front Immunol; 2021; 12():621706. PubMed ID: 33737928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus.
    Khan A; Khanzada MH; Khan K; Jalal K; Uddin R
    Immunol Res; 2024 Feb; 72(1):82-95. PubMed ID: 37608125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of Reverse Vaccinology and Molecular Modeling Associated with Cell Proliferation Stimulation Approach to Select Promiscuous Epitopes from Schistosoma mansoni.
    Oliveira FM; Coelho IE; Lopes MD; Taranto AG; Junior MC; Santos LL; Villar JA; Fonseca CT; Lopes DD
    Appl Biochem Biotechnol; 2016 Jul; 179(6):1023-40. PubMed ID: 26979443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.
    Kazi A; Chuah C; Majeed ABA; Leow CH; Lim BH; Leow CY
    Pathog Glob Health; 2018 May; 112(3):123-131. PubMed ID: 29528265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel vaccine design based on genomics data analysis: A review.
    Lu G; Shan S; Zainab B; Ayaz Z; He J; Xie Z; Rashid U; Zhang D; Mehmood Abbasi A
    Scand J Immunol; 2021 Mar; 93(3):e12986. PubMed ID: 33043473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.