BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21030065)

  • 1. Catalytic hydrogenation rate of polycyclic aromatic hydrocarbons in supercritical carbon dioxide containing polymer-stabilized palladium nanoparticles.
    Liao W; Liu HW; Chen HJ; Chang WY; Chiu KH; Wai CM
    Chemosphere; 2011 Jan; 82(4):573-80. PubMed ID: 21030065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic hydrogenation of polycyclic aromatic hydrocarbons over palladium/gamma-Al2O3 under mild conditions.
    Yuan T; Marshall WD
    J Hazard Mater; 2005 Nov; 126(1-3):149-57. PubMed ID: 16087290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic hydrodechlorination of dioxins over palladium nanoparticles in supercritical CO2 swollen microcellular polymers.
    Wu BZ; Chen HY; Wang JS; Tan CS; Wai CM; Liao W; Chiu K
    J Hazard Mater; 2012 Aug; 227-228():18-24. PubMed ID: 22640823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium.
    Yuan T; Marshall WD
    J Environ Monit; 2007 Dec; 9(12):1344-51. PubMed ID: 18049773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide.
    Yuan T; Fournier AR; Proudlock R; Marshall WD
    Environ Sci Technol; 2007 Mar; 41(6):1983-8. PubMed ID: 17410794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene.
    Wu BZ; Chen G; Yak H; Liao W; Chiu K; Peng SM
    Chemosphere; 2016 Jun; 152():345-52. PubMed ID: 26994428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of aluminum-supported Pd, Rh, and Rh-Pd nanoparticles in supercritical carbon dioxide system for hydrodebromination of polybrominated diphenyl ethers.
    Wu BZ; Sun YJ; Chen YH; Yak HK; Yu JJ; Liao W; Chiu K; Peng SM
    Chemosphere; 2016 Aug; 157():115-23. PubMed ID: 27213240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Destruction of pentachlorobiphenyl in soil by supercritical CO(2) extraction coupled with polymer-stabilized palladium nanoparticles.
    Wang JS; Chiu K
    Chemosphere; 2009 May; 75(5):629-633. PubMed ID: 19211124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Supported Heterogeneous Catalysts by Laser Ablation of Metallic Palladium in Supercritical Carbon Dioxide Medium.
    Parenago O; Rybaltovsky A; Epifanov E; Shubnyi A; Bragina G; Lazhko A; Khmelenin D; Yusupov V; Minaev N
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33316997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperbranched polymers containing stereocontorted cores as on-line solid-phase microextraction adsorbent for polycyclic aromatic hydrocarbons.
    Guan X; Zhao C; Liu X; Zhang H
    J Chromatogr A; 2013 Aug; 1302():28-33. PubMed ID: 23838301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported polyethylene glycol stabilized platinum nanoparticles for chemoselective hydrogenation of halonitrobenzenes in scCO2.
    Cheng H; Meng X; He L; Lin W; Zhao F
    J Colloid Interface Sci; 2014 Feb; 415():1-6. PubMed ID: 24267322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins.
    Nelkenbaum E; Dror I; Berkowitz B
    Chemosphere; 2007 Jun; 68(2):210-7. PubMed ID: 17335868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.
    Baran T; Açıksöz E; Menteş A
    Carbohydr Polym; 2016 May; 142():189-98. PubMed ID: 26917390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.
    Vilé G; Almora-Barrios N; Mitchell S; López N; Pérez-Ramírez J
    Chemistry; 2014 May; 20(20):5926-37. PubMed ID: 24753096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-free hydrogenation catalysis of polycyclic aromatic hydrocarbons.
    Segawa Y; Stephan DW
    Chem Commun (Camb); 2012 Dec; 48(98):11963-5. PubMed ID: 23128319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS.
    Tew MW; Nachtegaal M; Janousch M; Huthwelker T; van Bokhoven JA
    Phys Chem Chem Phys; 2012 Apr; 14(16):5761-8. PubMed ID: 22422024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation.
    Jia L; Zhang Q; Li Q; Song H
    Nanotechnology; 2009 Sep; 20(38):385601. PubMed ID: 19713585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput kinetic study of hydrogenation over palladium nanoparticles: combination of reaction and analysis.
    Trapp O; Weber SK; Bauch S; Bäcker T; Hofstadt W; Spliethoff B
    Chemistry; 2008; 14(15):4657-66. PubMed ID: 18384020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable production of green feed from carbon dioxide and hydrogen.
    Landau MV; Vidruk R; Herskowitz M
    ChemSusChem; 2014 Mar; 7(3):785-94. PubMed ID: 24678062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.