BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21030065)

  • 41. Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques.
    Hwang HM; Hu X; Zhao X
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2007; 25(4):313-52. PubMed ID: 18000785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies.
    Andersson JT; Hegazi AH; Roberz B
    Anal Bioanal Chem; 2006 Oct; 386(4):891-905. PubMed ID: 16924377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fate of polycyclic aromatic hydrocarbons during composting of activated sewage sludge with green waste.
    Hafidi M; Amir S; Jouraiphy A; Winterton P; El Gharous M; Merlina G; Revel JC
    Bioresour Technol; 2008 Dec; 99(18):8819-23. PubMed ID: 18513955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass.
    Deng W; Yan L; Wang B; Zhang Q; Song H; Wang S; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4712-4719. PubMed ID: 33230943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soluble amphiphilic tannin-stabilized Pd(0) nanoparticles: a highly active and selective homogeneous catalyst used in a biphasic catalytic system.
    Huang X; Wang Y; Liao X; Shi B
    Chem Commun (Camb); 2009 Aug; (31):4687-9. PubMed ID: 19641810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Palladium catalysed aryl amination reactions in supercritical carbon dioxide.
    Smith CJ; Tsang MW; Holmes AB; Danheiser RL; Tester JW
    Org Biomol Chem; 2005 Oct; 3(20):3767-81. PubMed ID: 16211113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.
    Biradar AV; Patil VS; Chandra P; Doke DS; Asefa T
    Chem Commun (Camb); 2015 May; 51(40):8496-9. PubMed ID: 25891032
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic study of hydrodechlorination of chlorobiphenyl with polymer-stabilized palladium nanoparticles in supercritical carbon dioxide.
    Liao W; Pan HB; Liu HW; Chen HJ; Wai CM
    J Phys Chem A; 2009 Sep; 113(36):9772-8. PubMed ID: 19685923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoporous silicabis(ethylsulfanyl)propane palladium catalysts for hydrogenation and one-pot two-step Suzuki cross-coupling followed by hydrogenation.
    Qazi A; Sullivan A
    Dalton Trans; 2011 Oct; 40(40):10637-42. PubMed ID: 21858340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario.
    Menor-Salván C; Ruiz-Bermejo M; Osuna-Esteban S; Muñoz-Caro G; Veintemillas-Verdaguer S
    Chem Biodivers; 2008 Dec; 5(12):2729-39. PubMed ID: 19089832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cumene hydroperoxide hydrogenation over Pd/C catalysts.
    Zhu QC; Shen BX; Ling H; Gu R
    J Hazard Mater; 2010 Mar; 175(1-3):646-50. PubMed ID: 19926212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Converting poly(ethylene terephthalate) waste into carbon microspheres in a supercritical CO2 system.
    Wei L; Yan N; Chen Q
    Environ Sci Technol; 2011 Jan; 45(2):534-9. PubMed ID: 21158440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
    Melo CI; Szczepańska A; Bogel-Łukasik E; Nunes da Ponte M; Branco LC
    ChemSusChem; 2016 May; 9(10):1081-4. PubMed ID: 27114238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(vinyl)chloride supported palladium nanoparticles: catalyst for rapid hydrogenation reactions.
    Hemantha HP; Sureshbabu VV
    Org Biomol Chem; 2011 Apr; 9(8):2597-601. PubMed ID: 21384017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.
    Meric P; Yu KM; Tsang SC
    Langmuir; 2004 Sep; 20(20):8537-45. PubMed ID: 15379472
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the interaction between a novel unnatural chiral ligand and reactant on palladium for asymmetric hydrogenation.
    Jeon EH; Yang S; Kang SH; Kim S; Lee H
    Phys Chem Chem Phys; 2015 Jul; 17(27):17771-7. PubMed ID: 26084713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons.
    Topuz F; Uyar T
    J Colloid Interface Sci; 2017 Jul; 497():233-241. PubMed ID: 28285051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils.
    Kreitinger JP; Quiñones-Rivera A; Neuhauser EF; Alexander M; Hawthorne SB
    Environ Toxicol Chem; 2007 Sep; 26(9):1809-17. PubMed ID: 17705650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles.
    Ibrahim M; Poreddy R; Philippot K; Riisager A; Garcia-Suarez EJ
    Dalton Trans; 2016 Dec; 45(48):19368-19373. PubMed ID: 27878165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.