These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 21030287)
1. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Cong A; Buijs JO; Dragomir-Daescu D Med Eng Phys; 2011 Mar; 33(2):164-73. PubMed ID: 21030287 [TBL] [Abstract][Full Text] [Related]
2. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. Bourne BC; van der Meulen MC J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990 [TBL] [Abstract][Full Text] [Related]
3. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol); 2015 Aug; 30(7):703-12. PubMed ID: 26024555 [TBL] [Abstract][Full Text] [Related]
4. Are DXA/aBMD and QCT/FEA Stiffness and Strength Estimates Sensitive to Sex and Age? Rezaei A; Giambini H; Rossman T; Carlson KD; Yaszemski MJ; Lu L; Dragomir-Daescu D Ann Biomed Eng; 2017 Dec; 45(12):2847-2856. PubMed ID: 28940110 [TBL] [Abstract][Full Text] [Related]
5. Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Op Den Buijs J; Dragomir-Daescu D Comput Methods Programs Biomed; 2011 Nov; 104(2):168-74. PubMed ID: 21159405 [TBL] [Abstract][Full Text] [Related]
6. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. Yosibash Z; Trabelsi N; Milgrom C J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228 [TBL] [Abstract][Full Text] [Related]
7. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Langton CM; Pisharody S; Keyak JH Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742 [TBL] [Abstract][Full Text] [Related]
8. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575 [TBL] [Abstract][Full Text] [Related]
9. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol); 2017 Jan; 41():1-8. PubMed ID: 27842233 [TBL] [Abstract][Full Text] [Related]
10. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Schileo E; Pitocchi J; Falcinelli C; Taddei F Bone; 2020 Jul; 136():115348. PubMed ID: 32240847 [TBL] [Abstract][Full Text] [Related]
11. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem. Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442 [TBL] [Abstract][Full Text] [Related]
12. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. Weinans H; Sumner DR; Igloria R; Natarajan RN J Biomech; 2000 Jul; 33(7):809-17. PubMed ID: 10831755 [TBL] [Abstract][Full Text] [Related]
14. Left-right differences in the proximal femur's strength of post-menopausal women: a multicentric finite element study. Taddei F; Falcinelli C; Balistreri L; Henys P; Baruffaldi F; Sigurdsson S; Gudnason V; Harris TB; Dietzel R; Armbrecht G; Boutroy S; Schileo E Osteoporos Int; 2016 Apr; 27(4):1519-1528. PubMed ID: 26576543 [TBL] [Abstract][Full Text] [Related]
15. Constructing anisotropic finite element model of bone from computed tomography (CT). Kazembakhshi S; Luo Y Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965 [TBL] [Abstract][Full Text] [Related]
16. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. Yosibash Z; Padan R; Joskowicz L; Milgrom C J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896 [TBL] [Abstract][Full Text] [Related]
17. Concept and development of an orthotropic FE model of the proximal femur. Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369 [TBL] [Abstract][Full Text] [Related]
18. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties. Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972 [TBL] [Abstract][Full Text] [Related]
19. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study. Miura M; Nakamura J; Matsuura Y; Wako Y; Suzuki T; Hagiwara S; Orita S; Inage K; Kawarai Y; Sugano M; Nawata K; Ohtori S BMC Musculoskelet Disord; 2017 Dec; 18(1):536. PubMed ID: 29246133 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties. Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]