BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21030429)

  • 21. The Bionic High-Cushioning Midsole of Shoes Inspired by Functional Characteristics of Ostrich Foot.
    Zhang R; Zhao L; Kong Q; Yu G; Yu H; Li J; Tai WH
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From fibre to function: are we accurately representing muscle architecture and performance?
    Charles J; Kissane R; Hoehfurtner T; Bates KT
    Biol Rev Camb Philos Soc; 2022 Aug; 97(4):1640-1676. PubMed ID: 35388613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the 3D Nature of the Magpie (Aves:
    Meilak EA; Gostling NJ; Palmer C; Heller MO
    Front Bioeng Biotechnol; 2021; 9():676894. PubMed ID: 34268296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species.
    Bishop PJ; Michel KB; Falisse A; Cuff AR; Allen VR; De Groote F; Hutchinson JR
    PLoS Comput Biol; 2021 Apr; 17(4):e1008843. PubMed ID: 33793558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model.
    Katugam K; Cox SM; Salzano MQ; De Boef A; Hast MW; Neuberger T; Ryan TM; Piazza SJ; Rubenson J
    Front Bioeng Biotechnol; 2020; 8():994. PubMed ID: 32984280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on bio-inspired feet based on the cushioning and shock absorption characteristics of the ostrich foot.
    Han D; Zhang R; Yu G; Jiang L; Li D; Li J
    PLoS One; 2020; 15(7):e0236324. PubMed ID: 32706841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Normal anatomical and diagnostic imaging techniques of the musculotendinous structures of the ostrich (
    Mahdy EAA; El Raouf MA
    J Adv Vet Anim Res; 2020 Jun; 7(2):242-252. PubMed ID: 32607356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eliminating high-intensity activity during growth reduces mechanical power capacity but not submaximal metabolic cost in a bipedal animal model.
    Cox SM; Salzano MQ; Piazza SJ; Rubenson J
    J Appl Physiol (1985); 2020 Jan; 128(1):50-58. PubMed ID: 31751181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Landing-Takeoff Asymmetries Applied to Running Mechanics: A New Perspective for Performance.
    da Rosa RG; Oliveira HB; Gomeñuka NA; Masiero MPB; da Silva ES; Zanardi APJ; de Carvalho AR; Schons P; Peyré-Tartaruga LA
    Front Physiol; 2019; 10():415. PubMed ID: 31040793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cancellous bone and theropod dinosaur locomotion. Part II-a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates.
    Bishop PJ; Hocknull SA; Clemente CJ; Hutchinson JR; Barrett RS; Lloyd DG
    PeerJ; 2018; 6():e5779. PubMed ID: 30402348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional capacity of kangaroo rat hindlimbs: adaptations for locomotor performance.
    Rankin JW; Doney KM; McGowan CP
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 29997260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phalangeal joints kinematics in ostrich (Struthio camelus) locomotion on sand.
    Zhang R; Ji Q; Han D; Wan H; Li X; Luo G; Xue S; Ma S; Yang M; Li J
    PLoS One; 2018; 13(2):e0191986. PubMed ID: 29489844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.
    Bishop PJ; Graham DF; Lamas LP; Hutchinson JR; Rubenson J; Hancock JA; Wilson RS; Hocknull SA; Barrett RS; Lloyd DG; Clemente CJ
    PLoS One; 2018; 13(2):e0192172. PubMed ID: 29466362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elite long jumpers with below the knee prostheses approach the board slower, but take-off more effectively than non-amputee athletes.
    Willwacher S; Funken J; Heinrich K; Müller R; Hobara H; Grabowski AM; Brüggemann GP; Potthast W
    Sci Rep; 2017 Nov; 7(1):16058. PubMed ID: 29167568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-altitude champions: birds that live and migrate at altitude.
    Laguë SL
    J Appl Physiol (1985); 2017 Oct; 123(4):942-950. PubMed ID: 28839002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3-D range of motion envelopes reveal interacting degrees of freedom in avian hind limb joints.
    Kambic RE; Roberts TJ; Gatesy SM
    J Anat; 2017 Dec; 231(6):906-920. PubMed ID: 28833095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plantar pressure distribution of ostrich during locomotion on loose sand and solid ground.
    Zhang R; Han D; Ma S; Luo G; Ji Q; Xue S; Yang M; Li J
    PeerJ; 2017; 5():e3613. PubMed ID: 28761792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.
    Bishop PJ; Clemente CJ; Weems RE; Graham DF; Lamas LP; Hutchinson JR; Rubenson J; Wilson RS; Hocknull SA; Barrett RS; Lloyd DG
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage.
    Moore TY; Rivera AM; Biewener AA
    Front Zool; 2017; 14():32. PubMed ID: 28680452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alteration of swing leg work and power during human accelerated sprinting.
    Nagahara R; Matsubayashi T; Matsuo A; Zushi K
    Biol Open; 2017 May; 6(5):633-641. PubMed ID: 28396485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.