BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 21030538)

  • 1. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species.
    Duan J; Kasper DL
    Glycobiology; 2011 Apr; 21(4):401-9. PubMed ID: 21030538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species.
    Panday S; Talreja R; Kavdia M
    Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks.
    Sandalio LM; Romero-Puertas MC
    Ann Bot; 2015 Sep; 116(4):475-85. PubMed ID: 26070643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress.
    Feigl G; Lehotai N; Molnár Á; Ördög A; Rodríguez-Ruiz M; Palma JM; Corpas FJ; Erdei L; Kolbert Z
    Ann Bot; 2015 Sep; 116(4):613-25. PubMed ID: 25538112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial antioxidant defense enzymes.
    Staerck C; Gastebois A; Vandeputte P; Calenda A; Larcher G; Gillmann L; Papon N; Bouchara JP; Fleury MJJ
    Microb Pathog; 2017 Sep; 110():56-65. PubMed ID: 28629723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.
    Hardy M; Zielonka J; Karoui H; Sikora A; Michalski R; Podsiadły R; Lopez M; Vasquez-Vivar J; Kalyanaraman B; Ouari O
    Antioxid Redox Signal; 2018 May; 28(15):1416-1432. PubMed ID: 29037049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Caucasian flora: a still-to-be-discovered rich source of antioxidants.
    Sahakyan N; Petrosyan M; Koss-Mikołajczyk I; Bartoszek A; Sad TG; Nasim MJ; Vanidze M; Kalandia A; Jacob C; Trchounian A
    Free Radic Res; 2019; 53(sup1):1153-1162. PubMed ID: 31510813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty.
    Hameister R; Kaur C; Dheen ST; Lohmann CH; Singh G
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2073-2087. PubMed ID: 31898397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology.
    Taniguchi N; Kizuka Y; Takamatsu S; Miyoshi E; Gao C; Suzuki K; Kitazume S; Ohtsubo K
    Arch Biochem Biophys; 2016 Apr; 595():72-80. PubMed ID: 27095220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides.
    Wang J; Hu S; Nie S; Yu Q; Xie M
    Oxid Med Cell Longev; 2016; 2016():5692852. PubMed ID: 26682009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress: Normal pregnancy versus preeclampsia.
    Chiarello DI; Abad C; Rojas D; Toledo F; Vázquez CM; Mate A; Sobrevia L; Marín R
    Biochim Biophys Acta Mol Basis Dis; 2020 Feb; 1866(2):165354. PubMed ID: 30590104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia.
    Stuart JA; Aibueku O; Bagshaw O; Moradi F
    Med Hypotheses; 2019 Aug; 129():109249. PubMed ID: 31371070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress.
    Considine MJ; Sandalio LM; Foyer CH
    Ann Bot; 2015 Sep; 116(4):469-73. PubMed ID: 26649372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease.
    Ushio-Fukai M; Ash D; Nagarkoti S; Belin de Chantemèle EJ; Fulton DJR; Fukai T
    Antioxid Redox Signal; 2021 Jun; 34(16):1319-1354. PubMed ID: 33899493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between reactive oxygen and nitrogen species in living organisms.
    Lushchak VI; Lushchak O
    Chem Biol Interact; 2021 Nov; 349():109680. PubMed ID: 34606757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging roles for ROS and RNS - versatile molecules in plants.
    Turkan I
    J Exp Bot; 2017 Jul; 68(16):4413-4416. PubMed ID: 28981778
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.