BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21030677)

  • 1. Histone modifications and exercise adaptations.
    McGee SL; Hargreaves M
    J Appl Physiol (1985); 2011 Jan; 110(1):258-63. PubMed ID: 21030677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-induced histone modifications in human skeletal muscle.
    McGee SL; Fairlie E; Garnham AP; Hargreaves M
    J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity.
    Chin ER
    J Appl Physiol (1985); 2005 Aug; 99(2):414-23. PubMed ID: 16020436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutritional modulation of training-induced skeletal muscle adaptations.
    Hawley JA; Burke LM; Phillips SM; Spriet LL
    J Appl Physiol (1985); 2011 Mar; 110(3):834-45. PubMed ID: 21030665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring.
    Zheng S; Rollet M; Pan YX
    J Nutr Biochem; 2012 Sep; 23(9):1064-71. PubMed ID: 22079207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene.
    Smith JA; Kohn TA; Chetty AK; Ojuka EO
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E698-704. PubMed ID: 18647882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice.
    Tsuji H; Saika H; Tsutsumi N; Hirai A; Nakazono M
    Plant Cell Physiol; 2006 Jul; 47(7):995-1003. PubMed ID: 16774928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling Site-Specific and Combinatorial Histone Modifications Using High-Resolution Mass Spectrometry in Histone Deacetylase Mutants of Fission Yeast.
    Abshiru N; Rajan RE; Verreault A; Thibault P
    J Proteome Res; 2016 Jul; 15(7):2132-42. PubMed ID: 27223649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone modifications and skeletal muscle metabolic gene expression.
    McGee SL; Hargreaves M
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):392-6. PubMed ID: 19793100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Skeletal Muscle Contractions Orchestrate Signaling Mechanisms to Trigger Nuclear NFATc1 Shuttling and Epigenetic Histone Modifications.
    Suhr F; Braun K; Vanmunster M; Bloch W
    Cell Physiol Biochem; 2019; 52(3):633-652. PubMed ID: 30907990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression.
    Méjat A; Ramond F; Bassel-Duby R; Khochbin S; Olson EN; Schaeffer L
    Nat Neurosci; 2005 Mar; 8(3):313-21. PubMed ID: 15711539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the regulation of muscle plasticity.
    Baar K; Hargreaves M
    J Appl Physiol (1985); 2011 Jan; 110(1):256-7. PubMed ID: 21088204
    [No Abstract]   [Full Text] [Related]  

  • 15. Epigenetic regulation of CIITA expression in human T-cells.
    van Eggermond MC; Boom DR; Klous P; Schooten E; Marquez VE; Wierda RJ; Holling TM; van den Elsen PJ
    Biochem Pharmacol; 2011 Nov; 82(10):1430-7. PubMed ID: 21664896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-uniform muscle adaptations to eccentric exercise and the implications for training and sport.
    Hedayatpour N; Falla D
    J Electromyogr Kinesiol; 2012 Jun; 22(3):329-33. PubMed ID: 22192598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogen-activated protein kinase signal transduction in skeletal muscle: effects of exercise and muscle contraction.
    Widegren U; Ryder JW; Zierath JR
    Acta Physiol Scand; 2001 Jul; 172(3):227-38. PubMed ID: 11472310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic regulation of airway inflammation.
    Adcock IM; Tsaprouni L; Bhavsar P; Ito K
    Curr Opin Immunol; 2007 Dec; 19(6):694-700. PubMed ID: 17720468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation.
    Aoyama K; Fukumoto Y; Ishibashi K; Kubota S; Morinaga T; Horiike Y; Yuki R; Takahashi A; Nakayama Y; Yamaguchi N
    Exp Cell Res; 2011 Dec; 317(20):2874-903. PubMed ID: 22001646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation is essential for ANG-II-induced IGF-IIR gene expression in H9c2 cardiomyoblast cells and pathologically hypertensive rat heart.
    Chu CH; Lo JF; Hu WS; Lu RB; Chang MH; Tsai FJ; Tsai CH; Weng YS; Tzang BS; Huang CY
    J Cell Physiol; 2012 Jan; 227(1):259-68. PubMed ID: 21412773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.