These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
58 related articles for article (PubMed ID: 21030741)
1. VARUN: discovering extensible motifs under saturation constraints. Apostolico A; Comin M; Parida L IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):752-26. PubMed ID: 21030741 [TBL] [Abstract][Full Text] [Related]
2. Conservative extraction of over-represented extensible motifs. Apostolico A; Comin M; Parida L Bioinformatics; 2005 Jun; 21 Suppl 1():i9-18. PubMed ID: 15961503 [TBL] [Abstract][Full Text] [Related]
3. ARCS-Motif: discovering correlated motifs from unaligned biological sequences. Zhang S; Su W; Yang J Bioinformatics; 2009 Jan; 25(2):183-9. PubMed ID: 19073591 [TBL] [Abstract][Full Text] [Related]
4. Mining Conditional Phosphorylation Motifs. Liu X; Wu J; Gong H; Deng S; He Z IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):915-27. PubMed ID: 26356863 [TBL] [Abstract][Full Text] [Related]
5. Discovering interesting motif-sets for multi-class protein sequence classification. Ma PC; Chan KC J Comput Biol; 2010 May; 17(5):733-43. PubMed ID: 20500024 [TBL] [Abstract][Full Text] [Related]
6. TrieAMD: a scalable and efficient apriori motif discovery approach. Al-Turaiki I; Badr G; Mathkour H Int J Data Min Bioinform; 2015; 13(1):13-30. PubMed ID: 26529905 [TBL] [Abstract][Full Text] [Related]
7. SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Davey NE; Shields DC; Edwards RJ Nucleic Acids Res; 2006; 34(12):3546-54. PubMed ID: 16855291 [TBL] [Abstract][Full Text] [Related]
8. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data. Hugo W; Ng SK; Sung WK J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555 [TBL] [Abstract][Full Text] [Related]
9. The SLiMDisc server: short, linear motif discovery in proteins. Davey NE; Edwards RJ; Shields DC Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682 [TBL] [Abstract][Full Text] [Related]
10. Scan2S: increasing the precision of PROSITE pattern motifs using secondary structure constraints. Skrabanek L; Niv MY Proteins; 2008 Sep; 72(4):1138-47. PubMed ID: 18320586 [TBL] [Abstract][Full Text] [Related]
12. CompariMotif: quick and easy comparisons of sequence motifs. Edwards RJ; Davey NE; Shields DC Bioinformatics; 2008 May; 24(10):1307-9. PubMed ID: 18375965 [TBL] [Abstract][Full Text] [Related]
13. NSAMD: A new approach to discover structured contiguous substrings in sequence datasets using Next-Symbol-Array. Pari A; Baraani A; Parseh S Comput Biol Chem; 2016 Oct; 64():384-395. PubMed ID: 27620380 [TBL] [Abstract][Full Text] [Related]
14. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets. Yu Q; Huo H; Vitter JS; Huan J; Nekrich Y IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):384-97. PubMed ID: 26357225 [TBL] [Abstract][Full Text] [Related]
16. DILIMOT: discovery of linear motifs in proteins. Neduva V; Russell RB Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W350-5. PubMed ID: 16845024 [TBL] [Abstract][Full Text] [Related]
17. Mining, compressing and classifying with extensible motifs. Apostolico A; Comin M; Parida L Algorithms Mol Biol; 2006 Mar; 1(1):4. PubMed ID: 16722593 [TBL] [Abstract][Full Text] [Related]
18. Mining protein sequences for motifs. Narasimhan G; Bu C; Gao Y; Wang X; Xu N; Mathee K J Comput Biol; 2002; 9(5):707-20. PubMed ID: 12487759 [TBL] [Abstract][Full Text] [Related]
19. Structural alphabet motif discovery and a structural motif database. Ku SY; Hu YJ Comput Biol Med; 2012 Jan; 42(1):93-105. PubMed ID: 22099701 [TBL] [Abstract][Full Text] [Related]
20. A computational strategy for the prediction of functional linear peptide motifs in proteins. Dinkel H; Sticht H Bioinformatics; 2007 Dec; 23(24):3297-303. PubMed ID: 17977881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]