These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21030823)

  • 1. Change of Bacillus cereus flavonoid O-triglucosyltransferase into flavonoid O-monoglucosyltransferase by error-prone polymerase chain reaction.
    Jung NR; Joe EJ; Kim BG; Ahn BC; Park JC; Chong Y; Ahn JH
    J Microbiol Biotechnol; 2010 Oct; 20(10):1393-6. PubMed ID: 21030823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus.
    Hyung Ko J; Gyu Kim B; Joong-Hoon A
    FEMS Microbiol Lett; 2006 May; 258(2):263-8. PubMed ID: 16640583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus.
    Ahn BC; Kim BG; Jeon YM; Lee EJ; Lim Y; Ahn JH
    J Microbiol Biotechnol; 2009 Apr; 19(4):387-90. PubMed ID: 19420995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.
    Chiu HH; Hsieh YC; Chen YH; Wang HY; Lu CY; Chen CJ; Li YK
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8411-24. PubMed ID: 27198725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, crystallization and preliminary X-ray crystallographic analysis of glycosyltransferase-1 from Bacillus cereus.
    Hsieh YC; Chiu HH; Huang YC; Fun HK; Lu CY; Li YK; Chen CJ
    Acta Crystallogr F Struct Biol Commun; 2014 Sep; 70(Pt 9):1228-31. PubMed ID: 25195897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity.
    Dai L; Qin L; Hu Y; Huang JW; Hu Z; Min J; Sun Y; Guo RT
    Biochem Biophys Res Commun; 2021 Jan; 534():73-78. PubMed ID: 33310191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering UDP-glucose Donor Substrate Specificity of
    Cho KW; Kim TS; Le TT; Nguyen HT; Oh YS; Pandey RP; Sohng JK
    J Microbiol Biotechnol; 2019 Feb; 29(2):268-273. PubMed ID: 30602272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of sugar acceptor of glycosyltransferase 1 from Bacillus cereus and its application for glucoside synthesis.
    Chiu HH; Shen MY; Liu YT; Fu YL; Chiu YA; Chen YH; Huang CP; Li YK
    Appl Microbiol Biotechnol; 2016 May; 100(10):4459-71. PubMed ID: 26795959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, mechanism and engineering of plant natural product glycosyltransferases.
    Wang X
    FEBS Lett; 2009 Oct; 583(20):3303-9. PubMed ID: 19796637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase.
    Li L; Modolo LV; Escamilla-Trevino LL; Achnine L; Dixon RA; Wang X
    J Mol Biol; 2007 Jul; 370(5):951-63. PubMed ID: 17553523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Functional Characterization of Cystathionine γ-lyase from
    Sagong HY; Kim B; Joo S; Kim KJ
    J Agric Food Chem; 2020 Dec; 68(51):15267-15274. PubMed ID: 33301683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
    Modolo LV; Li L; Pan H; Blount JW; Dixon RA; Wang X
    J Mol Biol; 2009 Oct; 392(5):1292-302. PubMed ID: 19683002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Crystal structures of plant uridine diphosphate-dependent glycosyltransferases].
    Lü H; Xue F; Liu C; Yang M; Ma L
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):838-47. PubMed ID: 25212002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales.
    Noguchi A; Horikawa M; Fukui Y; Fukuchi-Mizutani M; Iuchi-Okada A; Ishiguro M; Kiso Y; Nakayama T; Ono E
    Plant Cell; 2009 May; 21(5):1556-72. PubMed ID: 19454730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning, expression and characterization of a glycosyltransferase from rice.
    Ko JH; Kim BG; Hur HG; Lim Y; Ahn JH
    Plant Cell Rep; 2006 Jul; 25(7):741-6. PubMed ID: 16477404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional insights into O-methyltransferase from Bacillus cereus.
    Cho JH; Park Y; Ahn JH; Lim Y; Rhee S
    J Mol Biol; 2008 Oct; 382(4):987-97. PubMed ID: 18706426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the role of highly conserved residues forming the acceptor binding pocket of the promiscuous glycosyltransferase MGT in defining the specificity towards a panel of flavonoids.
    Xie C; Han W; Wang PG; Cheng J
    Biochemistry (Mosc); 2013 May; 78(5):536-41. PubMed ID: 23848156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modeling of two plant UDP-dependent sugar-sugar glycosyltransferases reveals a conserved glutamic acid residue that is a hallmark for sugar acceptor recognition.
    Brandt W; Schulze E; Liberman-Aloni R; Bartelt R; Pienkny S; Carmeli-Weissberg M; Frydman A; Eyal Y
    J Struct Biol; 2021 Sep; 213(3):107777. PubMed ID: 34391905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-pigmentation and flavonoid glycosyltransferases in blue Veronica persica flowers.
    Ono E; Ruike M; Iwashita T; Nomoto K; Fukui Y
    Phytochemistry; 2010 May; 71(7):726-35. PubMed ID: 20223486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and functional characterization of UGTs from Glycyrrhiza uralensis flavonoid pathway.
    Jiang D; Li P; Yin Y; Ren G; Liu C
    Int J Biol Macromol; 2021 Dec; 192():1108-1116. PubMed ID: 34582913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.