BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21030958)

  • 1. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.
    Xu T; Johnson CA; Gestwicki JE; Kumar A
    Nat Protoc; 2010 Nov; 5(11):1831-43. PubMed ID: 21030958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain.
    Edwards SR; Wandless TJ
    J Biol Chem; 2007 May; 282(18):13395-401. PubMed ID: 17350953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins.
    Raschbichler V; Lieber D; Bailer SM
    Traffic; 2012 Oct; 13(10):1326-34. PubMed ID: 22708827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.
    Coutinho-Budd JC; Snider SB; Fitzpatrick BJ; Rittiner JE; Zylka MJ
    J Negat Results Biomed; 2013 Sep; 12():13. PubMed ID: 24010830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.
    Sormani R; Yao L; Menand B; Ennar N; Lecampion C; Meyer C; Robaglia C
    BMC Plant Biol; 2007 Jun; 7():26. PubMed ID: 17543119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ScFKBP12 bridges rapamycin and AtTOR in Arabidopsis.
    Zhang R; Meng Z; Zhou T; Deng Y; Feng L; Wang Y; Sun G; Guo S; Ren M
    Plant Signal Behav; 2013 Nov; 8(11):e26115. PubMed ID: 23989449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the FKBP.rapamycin.FRB ternary complex.
    Banaszynski LA; Liu CW; Wandless TJ
    J Am Chem Soc; 2005 Apr; 127(13):4715-21. PubMed ID: 15796538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor.
    Bastidas RJ; Shertz CA; Lee SC; Heitman J; Cardenas ME
    Eukaryot Cell; 2012 Mar; 11(3):270-81. PubMed ID: 22210828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small molecule-directed approach to control protein localization and function.
    Geda P; Patury S; Ma J; Bharucha N; Dobry CJ; Lawson SK; Gestwicki JE; Kumar A
    Yeast; 2008 Aug; 25(8):577-94. PubMed ID: 18668531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy.
    Parada CA; de Oliveira IP; Gewehr MCF; Machado-Neto JA; Lima K; Eichler RAS; Lopes LR; Bechara LRG; Ferreira JCB; Festuccia WT; Censoni L; Tersariol ILS; Ferro ES
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FAP1, a homologue of human transcription factor NF-X1, competes with rapamycin for binding to FKBP12 in yeast.
    Kunz J; Loeschmann A; Deuter-Reinhard M; Hall MN
    Mol Microbiol; 2000 Sep; 37(6):1480-93. PubMed ID: 10998178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid.
    Rodriguez Camargo DC; Link NM; Dames SA
    Biochemistry; 2012 Jun; 51(24):4909-21. PubMed ID: 22620485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological function of FKBP12, a primary target of rapamycin/FK506: a newly identified role in transcription of ribosomal protein genes in yeast.
    Kasahara K
    Curr Genet; 2021 Jun; 67(3):383-388. PubMed ID: 33438053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CUG codon-adapted anchor-away toolkit for functional analysis of genes in
    Teli BB; Nagar P; Priyadarshini Y; Poonia P; Natarajan K
    mSphere; 2024 Feb; 9(2):e0070323. PubMed ID: 38251906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-cleavable rapamycin dimer as an optical trigger for protein dimerization.
    Brown KA; Zou Y; Shirvanyants D; Zhang J; Samanta S; Mantravadi PK; Dokholyan NV; Deiters A
    Chem Commun (Camb); 2015 Apr; 51(26):5702-5. PubMed ID: 25716548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional nuclear import and export of yeast proteins using a chemical inducer of dimerization.
    Patury S; Geda P; Dobry CJ; Kumar A; Gestwicki JE
    Cell Biochem Biophys; 2009; 53(3):127-34. PubMed ID: 19159085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.
    Sekiguchi M; Kobashigawa Y; Kawasaki M; Yokochi M; Kiso T; Suzumura K; Mori K; Teramura T; Inagaki F
    Protein Eng Des Sel; 2011 Nov; 24(11):811-7. PubMed ID: 21900305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR.
    Veverka V; Crabbe T; Bird I; Lennie G; Muskett FW; Taylor RJ; Carr MD
    Oncogene; 2008 Jan; 27(5):585-95. PubMed ID: 17684489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus.
    Juvvadi PR; Bobay BG; Gobeil SMC; Cole DC; Venters RA; Heitman J; Spicer LD; Steinbach WJ
    Biochem Biophys Res Commun; 2020 May; 526(1):48-54. PubMed ID: 32192767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anchor Away: A System for Fast Inhibition of Proteins in Drosophila.
    Sanchez Bosch P
    Methods Mol Biol; 2022; 2540():239-249. PubMed ID: 35980581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.