These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 21031033)
1. Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance. Smith NJ; Horst NK; Liu B; Caetano MS; Laubach M Front Integr Neurosci; 2010; 4():124. PubMed ID: 21031033 [TBL] [Abstract][Full Text] [Related]
2. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study. Urban Iii ET; Hudson HM; Li Y; Nishibe M; Barbay S; Guggenmos DJ; Nudo RJ Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38265300 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Rouiller EM; Moret V; Liang F Somatosens Mot Res; 1993; 10(3):269-89. PubMed ID: 8237215 [TBL] [Abstract][Full Text] [Related]
4. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Kunori N; Takashima I Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064 [TBL] [Abstract][Full Text] [Related]
5. Heterotopic Cortical Afferents to the Medial Prefrontal Cortex in the Rat. A Combined Retrograde and Anterograde Tracer Study. Van Eden CG; Lamme VA; Uylings HB Eur J Neurosci; 1992 Oct; 4(1):77-97. PubMed ID: 12106444 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats. Wang Y; Kurata K Brain Res; 1998 Jan; 781(1-2):137-47. PubMed ID: 9507093 [TBL] [Abstract][Full Text] [Related]
7. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Narayanan NS; Horst NK; Laubach M Neuroscience; 2006; 139(3):865-76. PubMed ID: 16500029 [TBL] [Abstract][Full Text] [Related]
8. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. Touvykine B; Elgbeili G; Quessy S; Dancause N J Neurophysiol; 2020 Apr; 123(4):1355-1368. PubMed ID: 32130080 [TBL] [Abstract][Full Text] [Related]
9. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
10. Roles of the medial prefrontal cortex, mediodorsal thalamus, and their combined circuit for performance of the odor span task in rats: analysis of memory capacity and foraging behavior. Scott GA; Liu MC; Tahir NB; Zabder NK; Song Y; Greba Q; Howland JG Learn Mem; 2020 Feb; 27(2):67-77. PubMed ID: 31949038 [TBL] [Abstract][Full Text] [Related]
11. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats. Mohammed H; Jain N J Comp Neurol; 2016 Oct; 524(15):3104-23. PubMed ID: 27037503 [TBL] [Abstract][Full Text] [Related]
12. Interactions between rostral and caudal cortical motor areas in the rat. Deffeyes JE; Touvykine B; Quessy S; Dancause N J Neurophysiol; 2015 Jun; 113(10):3893-904. PubMed ID: 25855697 [TBL] [Abstract][Full Text] [Related]
13. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Okabe N; Shiromoto T; Himi N; Lu F; Maruyama-Nakamura E; Narita K; Iwachidou N; Yagita Y; Miyamoto O Neuroscience; 2016 Dec; 339():338-362. PubMed ID: 27725217 [TBL] [Abstract][Full Text] [Related]
14. Central Thalamic-Medial Prefrontal Control of Adaptive Responding in the Rat: Many Players in the Chamber. Mair RG; Francoeur MJ; Gibson BM Front Behav Neurosci; 2021; 15():642204. PubMed ID: 33897387 [TBL] [Abstract][Full Text] [Related]
15. Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. Fang PC; Stepniewska I; Kaas JH J Comp Neurol; 2005 Sep; 490(3):305-33. PubMed ID: 16082679 [TBL] [Abstract][Full Text] [Related]
16. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Hoover WB; Vertes RP Brain Struct Funct; 2007 Sep; 212(2):149-79. PubMed ID: 17717690 [TBL] [Abstract][Full Text] [Related]
17. The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Passetti F; Chudasama Y; Robbins TW Cereb Cortex; 2002 Dec; 12(12):1254-68. PubMed ID: 12427677 [TBL] [Abstract][Full Text] [Related]
18. Effects of rat medial prefrontal cortex temporal inactivation on a delayed alternation task. Izaki Y; Maruki K; Hori K; Nomura M Neurosci Lett; 2001 Nov; 315(3):129-32. PubMed ID: 11716980 [TBL] [Abstract][Full Text] [Related]
19. Prosencephalic afferents to the mediodorsal thalamic nucleus. Velayos JL; Reinoso-Suárez F J Comp Neurol; 1985 Dec; 242(2):161-81. PubMed ID: 4086663 [TBL] [Abstract][Full Text] [Related]
20. Modulation of sustained electromyographic activity by single intracortical microstimuli: comparison of two forelimb motor cortical areas of the rat. Liang F; Rouiller EM; Wiesendanger M Somatosens Mot Res; 1993; 10(1):51-61. PubMed ID: 8484296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]