These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21031557)
1. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. Moreno N; Morona R; López JM; González A J Comp Neurol; 2010 Dec; 518(24):4877-902. PubMed ID: 21031557 [TBL] [Abstract][Full Text] [Related]
2. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. Moreno N; Domínguez L; Morona R; González A J Comp Neurol; 2012 Feb; 520(3):453-78. PubMed ID: 21935937 [TBL] [Abstract][Full Text] [Related]
3. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. Abellán A; Medina L J Comp Neurol; 2009 Aug; 515(4):465-501. PubMed ID: 19459222 [TBL] [Abstract][Full Text] [Related]
4. Expression of cLhx6 and cLhx7/8 suggests a pallido-pedunculo-preoptic origin for the lateral and medial parts of the avian bed nucleus of the stria terminalis. Abellán A; Medina L Brain Res Bull; 2008 Mar; 75(2-4):299-304. PubMed ID: 18331888 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. Moreno N; Morona R; López JM; Domínguez L; Joven A; Bandín S; González A J Comp Neurol; 2012 Feb; 520(2):330-63. PubMed ID: 21674496 [TBL] [Abstract][Full Text] [Related]
6. Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala. Medina L; Bupesh M; Abellán A Brain Behav Evol; 2011; 78(3):216-36. PubMed ID: 21860224 [TBL] [Abstract][Full Text] [Related]
7. Identification of striatal and pallidal regions in the subpallium of anamniotes. González A; Morona R; Moreno N; Bandín S; López JM Brain Behav Evol; 2014; 83(2):93-103. PubMed ID: 24776990 [TBL] [Abstract][Full Text] [Related]
8. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. Ganz J; Kaslin J; Freudenreich D; Machate A; Geffarth M; Brand M J Comp Neurol; 2012 Feb; 520(3):633-55. PubMed ID: 21858823 [TBL] [Abstract][Full Text] [Related]
9. Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. García-López M; Abellán A; Legaz I; Rubenstein JL; Puelles L; Medina L J Comp Neurol; 2008 Jan; 506(1):46-74. PubMed ID: 17990271 [TBL] [Abstract][Full Text] [Related]
10. Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. Mueller T; Wullimann MF; Guo S J Comp Neurol; 2008 Mar; 507(2):1245-57. PubMed ID: 18181142 [TBL] [Abstract][Full Text] [Related]
11. An immunohistochemical study of the telencephalon of the African lungfish, Protopterus annectens. Reiner A; Northcutt RG J Comp Neurol; 1987 Feb; 256(3):463-81. PubMed ID: 2437161 [TBL] [Abstract][Full Text] [Related]
12. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus. Moreno N; Domínguez L; Rétaux S; González A Neuroscience; 2008 Jul; 154(4):1423-39. PubMed ID: 18515014 [TBL] [Abstract][Full Text] [Related]
13. Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and the basal telencephalon. Ottersen OP J Comp Neurol; 1980 Nov; 194(1):267-89. PubMed ID: 7440798 [TBL] [Abstract][Full Text] [Related]
14. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. Vicario A; Abellán A; Medina L Brain Behav Evol; 2015; 85(3):139-69. PubMed ID: 26022433 [TBL] [Abstract][Full Text] [Related]
15. Contributions of developmental studies in the dogfish Scyliorhinus canicula to the brain anatomy of elasmobranchs: insights on the basal ganglia. Quintana-Urzainqui I; Sueiro C; Carrera I; Ferreiro-Galve S; Santos-Durán G; Pose-Méndez S; Mazan S; Candal E; Rodríguez-Moldes I Brain Behav Evol; 2012; 80(2):127-41. PubMed ID: 22986828 [TBL] [Abstract][Full Text] [Related]
16. Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Puelles L; Morales-Delgado N; Merchán P; Castro-Robles B; Martínez-de-la-Torre M; Díaz C; Ferran JL Brain Struct Funct; 2016 Jul; 221(6):3027-65. PubMed ID: 26189100 [TBL] [Abstract][Full Text] [Related]
17. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system. Costagli A; Kapsimali M; Wilson SW; Mione M J Comp Neurol; 2002 Aug; 450(1):73-93. PubMed ID: 12124768 [TBL] [Abstract][Full Text] [Related]
18. Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments. Moreno N; González A; Rétaux S Dev Neurobiol; 2008 Mar; 68(4):504-20. PubMed ID: 18214835 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary and developmental contributions for understanding the organization of the basal ganglia. Medina L; Abellán A; Vicario A; Desfilis E Brain Behav Evol; 2014; 83(2):112-25. PubMed ID: 24776992 [TBL] [Abstract][Full Text] [Related]
20. Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis. Yao M; Westphal NJ; Denver RJ J Neuroendocrinol; 2004 Nov; 16(11):880-93. PubMed ID: 15584929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]