These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21033358)

  • 61. Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
    Chin L; Yue P; Feng JJ; Seow CY
    Biophys J; 2006 Nov; 91(10):3653-63. PubMed ID: 16935957
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Why muscle is an efficient shock absorber.
    Ferenczi MA; Bershitsky SY; Koubassova NA; Kopylova GV; Fernandez M; Narayanan T; Tsaturyan AK
    PLoS One; 2014; 9(1):e85739. PubMed ID: 24465673
    [TBL] [Abstract][Full Text] [Related]  

  • 63. When fibres go slack and cross bridges are free to run: a brilliant method to study kinetic properties of acto-myosin interaction.
    Reggiani C
    J Physiol; 2007 Aug; 583(Pt 1):5-7. PubMed ID: 17569729
    [No Abstract]   [Full Text] [Related]  

  • 64. The "roll and lock" mechanism of force generation in muscle.
    Ferenczi MA; Bershitsky SY; Koubassova N; Siththanandan V; Helsby WI; Panine P; Roessle M; Narayanan T; Tsaturyan AK
    Structure; 2005 Jan; 13(1):131-41. PubMed ID: 15642268
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Instabilities in the transient response of muscle.
    Vilfan A; Duke T
    Biophys J; 2003 Aug; 85(2):818-27. PubMed ID: 12885630
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Can muscle fibers be stable on the descending limbs of their sarcomere length-tension relations?
    Zahalak GI
    J Biomech; 1997; 30(11-12):1179-82. PubMed ID: 9456388
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The mechanism of spontaneous oscillatory contractions in skeletal muscle.
    Smith DA; Stephenson DG
    Biophys J; 2009 May; 96(9):3682-91. PubMed ID: 19413973
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Magnitude of sarcomere extension correlates with initial sarcomere length during lengthening of activated single fibers from soleus muscle of rats.
    Panchangam A; Claflin DR; Palmer ML; Faulkner JA
    Biophys J; 2008 Aug; 95(4):1890-901. PubMed ID: 18469072
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interactions between connected half-sarcomeres produce emergent mechanical behavior in a mathematical model of muscle.
    Campbell KS
    PLoS Comput Biol; 2009 Nov; 5(11):e1000560. PubMed ID: 19911050
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of tensile force on the mechanical behavior of actin filaments.
    Matsushita S; Inoue Y; Hojo M; Sokabe M; Adachi T
    J Biomech; 2011 Jun; 44(9):1776-81. PubMed ID: 21536289
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strain dependence of the elastic properties of force-producing cross-bridges in rigor skeletal muscle.
    van der Heide U; Ketelaars M; Treijtel BW; de Beer EL; Blangé T
    Biophys J; 1997 Feb; 72(2 Pt 1):814-21. PubMed ID: 9017206
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The ultrastructure of striated muscle at various sarcomere lengths.
    SPIRO D
    J Biophys Biochem Cytol; 1956 Jul; 2(4 Suppl):157-62. PubMed ID: 13357536
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Short-range mechanical properties of skeletal and cardiac muscles.
    Campbell KS
    Adv Exp Med Biol; 2010; 682():223-46. PubMed ID: 20824529
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Passive mechanical properties of the medial gastrocnemius muscle of the cat.
    Whitehead NP; Gregory JE; Morgan DL; Proske U
    J Physiol; 2001 Nov; 536(Pt 3):893-903. PubMed ID: 11691881
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An electrodynamic (moving field) theory of muscular contraction.
    Seely S
    J Theor Biol; 1986 Jul; 121(2):233-48. PubMed ID: 3795995
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Force and kinetics of fast and slow muscle myosin determined with a synthetic sarcomere-like nanomachine.
    Buonfiglio V; Pertici I; Marcello M; Morotti I; Caremani M; Reconditi M; Linari M; Fanelli D; Lombardi V; Bianco P
    Commun Biol; 2024 Mar; 7(1):361. PubMed ID: 38521889
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle.
    Tanner BC; McNabb M; Palmer BM; Toth MJ; Miller MS
    Arch Biochem Biophys; 2014 Jun; 552-553():117-27. PubMed ID: 24486373
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanical significance of obliquely striated architecture in nematode muscle.
    Burr AH; Gans C
    Biol Bull; 1998 Feb; 194(1):1-6. PubMed ID: 9525033
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Theoretical predictions of the effects of force transmission by desmin on intersarcomere dynamics.
    Meyer GA; Kiss B; Ward SR; Morgan DL; Kellermayer MS; Lieber RL
    Biophys J; 2010 Jan; 98(2):258-66. PubMed ID: 20338847
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin.
    Brunello E; Reconditi M; Elangovan R; Linari M; Sun YB; Narayanan T; Panine P; Piazzesi G; Irving M; Lombardi V
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):20114-9. PubMed ID: 18077437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.