These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21033659)
1. A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Jin YO; Mattes TE Environ Sci Technol; 2010 Dec; 44(23):9036-41. PubMed ID: 21033659 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of ethene-enriched groundwater microcosms from a vinyl chloride-contaminated site. Chuang AS; Jin YO; Schmidt LS; Li Y; Fogel S; Smoler D; Mattes TE Environ Sci Technol; 2010 Mar; 44(5):1594-601. PubMed ID: 20121086 [TBL] [Abstract][Full Text] [Related]
3. Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Mattes TE; Jin YO; Livermore J; Pearl M; Liu X Appl Microbiol Biotechnol; 2015 Nov; 99(21):9267-76. PubMed ID: 26169630 [TBL] [Abstract][Full Text] [Related]
4. Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater. Fullerton H; Rogers R; Freedman DL; Zinder SH Biodegradation; 2014 Nov; 25(6):893-901. PubMed ID: 25151178 [TBL] [Abstract][Full Text] [Related]
5. Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes. Freedman DL; Danko AS; Verce MF Water Sci Technol; 2001; 43(5):333-40. PubMed ID: 11379150 [TBL] [Abstract][Full Text] [Related]
6. Integrated methodological approach reveals microbial diversity and functions in aerobic groundwater microcosms adapted to vinyl chloride. Liu X; Wu Y; Wilson FP; Yu K; Lintner C; Cupples AM; Mattes TE FEMS Microbiol Ecol; 2018 Sep; 94(9):. PubMed ID: 29945195 [TBL] [Abstract][Full Text] [Related]
7. Assessment and modification of degenerate qPCR primers that amplify functional genes from etheneotrophs and vinyl chloride-assimilators. Jin YO; Mattes TE Lett Appl Microbiol; 2011 Nov; 53(5):576-80. PubMed ID: 21880051 [TBL] [Abstract][Full Text] [Related]
8. Cryogenic soil coring reveals coexistence of aerobic and anaerobic vinyl chloride degrading bacteria in a chlorinated ethene contaminated aquifer. Richards PM; Liang Y; Johnson RL; Mattes TE Water Res; 2019 Jun; 157():281-291. PubMed ID: 30959331 [TBL] [Abstract][Full Text] [Related]
9. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria. Findlay M; Smoler DF; Fogel S; Mattes TE Environ Sci Technol; 2016 Apr; 50(7):3617-25. PubMed ID: 26918370 [TBL] [Abstract][Full Text] [Related]
10. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. Mattes TE; Alexander AK; Coleman NV FEMS Microbiol Rev; 2010 Jul; 34(4):445-75. PubMed ID: 20146755 [TBL] [Abstract][Full Text] [Related]
11. Nocardioides, Sediminibacterium, Aquabacterium, Variovorax, and Pseudomonas linked to carbon uptake during aerobic vinyl chloride biodegradation. Wilson FP; Liu X; Mattes TE; Cupples AM Environ Sci Pollut Res Int; 2016 Oct; 23(19):19062-70. PubMed ID: 27343076 [TBL] [Abstract][Full Text] [Related]
12. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA). Mundle SO; Johnson T; Lacrampe-Couloume G; Pérez-de-Mora A; Duhamel M; Edwards EA; McMaster ML; Cox E; Révész K; Sherwood Lollar B Environ Sci Technol; 2012 Feb; 46(3):1731-8. PubMed ID: 22201221 [TBL] [Abstract][Full Text] [Related]
13. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Liang Y; Liu X; Singletary MA; Wang K; Mattes TE Environ Sci Technol; 2017 Nov; 51(21):12164-12174. PubMed ID: 28981261 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic degradation of vinyl chloride in aquifer microcosms. Smits TH; Assal A; Hunkeler D; Holliger C J Environ Qual; 2011; 40(3):915-22. PubMed ID: 21546677 [TBL] [Abstract][Full Text] [Related]
15. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077 [TBL] [Abstract][Full Text] [Related]
16. Detection and identification of Dehalococcoides species responsible for in situ dechlorination of trichloroethene to ethene enhanced by hydrogen-releasing compounds. Nishimura M; Ebisawa M; Sakihara S; Kobayashi A; Nakama T; Okochi M; Yohda M Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):1-7. PubMed ID: 17916062 [TBL] [Abstract][Full Text] [Related]
17. Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones. Atashgahi S; Maphosa F; Doğan E; Smidt H; Springael D; Dejonghe W FEMS Microbiol Ecol; 2013 Apr; 84(1):133-42. PubMed ID: 23167955 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Coleman NV; Mattes TE; Gossett JM; Spain JC Appl Environ Microbiol; 2002 Dec; 68(12):6162-71. PubMed ID: 12450841 [TBL] [Abstract][Full Text] [Related]
19. Contrasting regulatory effects of organic acids on aerobic vinyl chloride biodegradation in etheneotrophs. Zhao W; Richards PM; Mattes TE Appl Microbiol Biotechnol; 2022 Sep; 106(18):6335-6346. PubMed ID: 36056199 [TBL] [Abstract][Full Text] [Related]
20. Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer. Fathepure BZ; Elango VK; Singh H; Bruner MA FEMS Microbiol Lett; 2005 Jul; 248(2):227-34. PubMed ID: 15964716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]