These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21033663)

  • 1. Synthesis and photophysical studies of chiral helical macrocyclic scaffolds via coordination-driven self-assembly of 1,8,9,16-tetraethynyltetraphenylene. formation of monometallic platinum(II) and dimetallic platinum(II)-ruthenium(II) complexes.
    Lin F; Peng HY; Chen JX; Chik DT; Cai Z; Wong KM; Yam VW; Wong HN
    J Am Chem Soc; 2010 Nov; 132(46):16383-92. PubMed ID: 21033663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral rodlike platinum complexes, double helical chains, and potential asymmetric hydrogenation ligand based on "linear" building blocks: 1,8,9,16-tetrahydroxytetraphenylene and 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene.
    Peng HY; Lam CK; Mak TC; Cai Z; Ma WT; Li YX; Wong HN
    J Am Chem Soc; 2005 Jul; 127(26):9603-11. PubMed ID: 15984888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral poly(4-ethynylbenzoyl-l-valine)-induced helical self-assembly of alkynylplatinum(II) terpyridyl complexes with tunable electronic absorption, emission, and circular dichroism changes.
    Chan KH; Lam JW; Wong KM; Tang BZ; Yam VW
    Chemistry; 2009; 15(10):2328-34. PubMed ID: 19156813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lanthanide class of a trinuclear enantiopure helical architecture containing chiral ligands: synthesis, structure, and properties.
    Lama M; Mamula O; Kottas GS; Rizzo F; De Cola L; Nakamura A; Kuroda R; Stoeckli-Evans H
    Chemistry; 2007; 13(26):7358-73. PubMed ID: 17623292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanide complexes of chiral 3 + 3 macrocycles derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol.
    Paluch M; Lisowski J; Lis T
    Dalton Trans; 2006 Jan; (2):381-8. PubMed ID: 16365653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the self-assembly of metal-organic nanotubes using metal-metal and π-stacking interactions: bis(pyridylethynyl) silver(I) metallo-macrocycles and coordination polymers.
    Kilpin KJ; Gower ML; Telfer SG; Jameson GB; Crowley JD
    Inorg Chem; 2011 Feb; 50(3):1123-34. PubMed ID: 21207943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel chiral "calixsalen" macrocycle and chiral robson-type macrocyclic complexes.
    Gao J; Reibenspies JH; Zingaro RA; Woolley FR; Martell AE; Clearfield A
    Inorg Chem; 2005 Jan; 44(2):232-41. PubMed ID: 15651868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of electroactive thiacrown ruthenium(II) complexes into hydrogen-bonded chain and tape networks.
    Shan N; Hawxwell SM; Adams H; Brammer L; Thomas JA
    Inorg Chem; 2008 Dec; 47(24):11551-60. PubMed ID: 18998622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium polypyridine complexes of tris-(2-pyridyl)-1,3,5-triazine-unusual building blocks for the synthesis of photochemical molecular devices.
    Schwalbe M; Karnahl M; Görls H; Chartrand D; Laverdiere F; Hanan GS; Tschierlei S; Dietzek B; Schmitt M; Popp J; Vos JG; Rau S
    Dalton Trans; 2009 May; (20):4012-22. PubMed ID: 19440601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diastereoselective synthesis of coordination compounds: a chiral tripodal ligand based on bipyridine units and its ruthenium(II) and iron(II) complexes.
    Hamann C; Von Zelewsky A; Neels A; Stoeckli-Evans H
    Dalton Trans; 2004 Feb; (3):402-6. PubMed ID: 15252546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiopure, supramolecular helices containing three-dimensional tetranuclear lanthanide(III) arrays: synthesis, structure, properties, and solvent-driven trinuclear/tetranuclear interconversion.
    Lama M; Mamula O; Kottas GS; De Cola L; Stoeckli-Evans H; Shova S
    Inorg Chem; 2008 Sep; 47(18):8000-15. PubMed ID: 18698692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambidentate ligands capable of variable bond angles in the coordination-driven self-assembly of discrete Pt macrocycles.
    Chi KW; Addicott C; Moon ME; Lee HJ; Yoon SC; Stang PJ
    J Org Chem; 2006 Aug; 71(17):6662-5. PubMed ID: 16901167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide complexes of the chiral hexaaza macrocycle and its meso-type isomer: solvent-controlled helicity inversion.
    Gregoliński J; Slepokura K; Lisowski J
    Inorg Chem; 2007 Sep; 46(19):7923-34. PubMed ID: 17705368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.
    Jiang JC; Chu ZL; Huang W; Wang G; You XZ
    Inorg Chem; 2010 Jul; 49(13):5897-911. PubMed ID: 20515021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and crystallographic studies of neutral platinum-based macrocycles formed via self-assembly.
    Mukherjee PS; Das N; Kryschenko YK; Arif AM; Stang PJ
    J Am Chem Soc; 2004 Mar; 126(8):2464-73. PubMed ID: 14982455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, luminescence, and electrochemical studies of tris(homoleptic) ruthenium(II) and osmium(II) complexes of 6'-tolyl-2,2':4',2''-terpyridine.
    Rajalakshmanan E; Alexander V
    Inorg Chem; 2007 Aug; 46(16):6252-60. PubMed ID: 17625831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and self-assembly of a rigid exotopic bisphenanthroline macrocycle: surface patterning and a supramolecular nanobasket.
    Kalsani V; Ammon H; Jäckel F; Rabe JP; Schmittel M
    Chemistry; 2004 Oct; 10(21):5481-92. PubMed ID: 15378685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a photoactive supramolecular system based on a platinum(II) bis-acetylide building block incorporated into a ruthenium(II) polypyridyl complex.
    Shiotsuka M; Nishiko N; Keyaki K; Nozaki K
    Dalton Trans; 2010 Feb; 39(7):1831-5. PubMed ID: 20449429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new strategy for the improvement of photophysical properties in ruthenium(II) polypyridyl complexes. Synthesis and photophysical and electrochemical characterization of six mononuclear ruthenium(II) bisterpyridine-type complexes.
    Abrahamsson M; Wolpher H; Johansson O; Larsson J; Kritikos M; Eriksson L; Norrby PO; Bergquist J; Sun L; Akermark B; Hammarström L
    Inorg Chem; 2005 May; 44(9):3215-25. PubMed ID: 15847430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wire-type ruthenium(II) complexes with terpyridine-containing [2]rotaxanes as ligands: Synthesis, characterization, and photophysical properties.
    Davidson GJ; Loeb SJ; Passaniti P; Silvi S; Credi A
    Chemistry; 2006 Apr; 12(12):3233-42. PubMed ID: 16470772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.