These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21034144)

  • 1. A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation.
    Zheng X; Xue Q; Mittal R; Beilamowicz S
    J Biomech Eng; 2010 Nov; 132(11):111003. PubMed ID: 21034144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning-Based Generalized Empirical Flow Model of Glottal Flow During Normal Phonation.
    Zhang Y; Jiang W; Sun L; Wang J; Zheng X; Xue Q
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35171218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
    Luo H; Mittal R; Zheng X; Bielamowicz SA; Walsh RJ; Hahn JK
    J Comput Phys; 2008 Nov; 227(22):9303-9332. PubMed ID: 19936017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model.
    Smith SL; Thomson SL
    J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2011 Apr; 129(4):2121-32. PubMed ID: 21476668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of vocal fold vibratory modes to their three-layer structure: implications for computational modeling of phonation.
    Xue Q; Zheng X; Bielamowicz S; Mittal R
    J Acoust Soc Am; 2011 Aug; 130(2):965-76. PubMed ID: 21877809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element study on the cause of vocal fold vertical stiffness variation.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2017 Apr; 141(4):EL351. PubMed ID: 28464635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Reduced-Order Flow Model for Fluid-Structure Interaction Simulation of Vocal Fold Vibration.
    Li Z; Chen Y; Chang S; Luo H
    J Biomech Eng; 2020 Feb; 142(2):0210051-02100510. PubMed ID: 31201740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.