These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21034464)

  • 81. A strict upper bound for the partition distance and the cluster distance of phylogenetic trees for each fixed pair of topological trees.
    Middendorf M; Wieseke N
    PLoS One; 2018; 13(9):e0204907. PubMed ID: 30265723
    [TBL] [Abstract][Full Text] [Related]  

  • 82. An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees.
    Jansson J; Rajaby R; Sung WK
    J Comput Biol; 2019 Sep; 26(9):893-907. PubMed ID: 30990336
    [No Abstract]   [Full Text] [Related]  

  • 83. Using max cut to enhance rooted trees consistency.
    Snir S; Rao S
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):323-33. PubMed ID: 17085842
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric.
    Cardona G; Llabrés M; Rosselló F; Valiente G
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(1):46-61. PubMed ID: 19179698
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Exact solutions for species tree inference from discordant gene trees.
    Chang WC; Górecki P; Eulenstein O
    J Bioinform Comput Biol; 2013 Oct; 11(5):1342005. PubMed ID: 24131054
    [TBL] [Abstract][Full Text] [Related]  

  • 86. New techniques for mining frequent patterns in unordered trees.
    Zhang S; Du Z; Wang JT
    IEEE Trans Cybern; 2015 Jun; 45(6):1113-25. PubMed ID: 25137740
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bayesian inference of phylogenetic networks from bi-allelic genetic markers.
    Zhu J; Wen D; Yu Y; Meudt HM; Nakhleh L
    PLoS Comput Biol; 2018 Jan; 14(1):e1005932. PubMed ID: 29320496
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A novel algorithm and web-based tool for comparing two alternative phylogenetic trees.
    Nye TM; Liò P; Gilks WR
    Bioinformatics; 2006 Jan; 22(1):117-9. PubMed ID: 16234319
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle.
    Desper R; Gascuel O
    J Comput Biol; 2002; 9(5):687-705. PubMed ID: 12487758
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data.
    Nei M; Tajima F; Tateno Y
    J Mol Evol; 1983; 19(2):153-70. PubMed ID: 6571220
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Efficient algorithms for knowledge-enhanced supertree and supermatrix phylogenetic problems.
    Wehe A; Burleigh JG; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1432-41. PubMed ID: 24407302
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees.
    van Iersel L; Kelk S; Lekić N; Scornavacca C
    BMC Bioinformatics; 2014 May; 15():127. PubMed ID: 24884964
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Unrooted unordered homeomorphic subtree alignment of RNA trees.
    Milo N; Zakov S; Katzenelson E; Bachmat E; Dinitz Y; Ziv-Ukelson M
    Algorithms Mol Biol; 2013 Apr; 8(1):13. PubMed ID: 23590940
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Two-Workshop Collaborative, Integrated Scheduling Algorithm considering the Prescheduling of the Root-Subtree Processes.
    Xie Z; Teng H; Ming J; Yue X
    Comput Intell Neurosci; 2022; 2022():9065638. PubMed ID: 35958759
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tharyan et al's reply.
    Tharyan P
    Indian J Psychiatry; 1995 Apr; 37(2):100. PubMed ID: 21743727
    [No Abstract]   [Full Text] [Related]  

  • 96. Reply to Sayeed et al's Reply to Reply.
    Carragee EJ; Andersson GBJ; Belcourt RM; Eskay-Auerbach M; Goertz M; Haldeman S; Hegmann KT; Lessenger JE; Mayer T; Mueller KL; Murphy DR; Tellin WG; Thiese MS; Travis R; Weiss MS; Harris JS
    J Occup Environ Med; 2022 Jun; 64(6):e391-e392. PubMed ID: 35761429
    [No Abstract]   [Full Text] [Related]  

  • 97. The analysis of Range Quickselect and related problems.
    Martínez C; Panholzer A; Prodinger H
    Theor Comput Sci; 2011 Oct; 412(46-24):6537-6555. PubMed ID: 22163377
    [TBL] [Abstract][Full Text] [Related]  

  • 98. DISTANCE METHODS: A REPLY TO FARRIS.
    Felsenstein J
    Cladistics; 1986 Mar; 2(2):130-143. PubMed ID: 34949068
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Response to Ranpariya et al's "Direct-to-consumer teledermatology platforms may have inherent conflicts of interest".
    Karim M; Klein E; Gutierrez D; Adotama P; Lo Sicco K
    J Am Acad Dermatol; 2022 May; 86(5):e227-e228. PubMed ID: 34998962
    [No Abstract]   [Full Text] [Related]  

  • 100. Response to Gu et al's "Treatment-resistant dermatophytosis: A representative case highlighting an emerging public health threat".
    Edriss MT; Parker JJ; Pritchett EN
    JAAD Case Rep; 2023 Feb; 32():88-89. PubMed ID: 36687305
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.