BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21034843)

  • 1. Functional analyses of lissencephaly-related proteins in Dictyostelium.
    Meyer I; Kuhnert O; Gräf R
    Semin Cell Dev Biol; 2011 Feb; 22(1):89-96. PubMed ID: 21034843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular mechanism of lissencephaly--how LIS1 and NDEL1 regulate cytoplasmic dynein?].
    Hirotsune S
    Brain Nerve; 2008 Apr; 60(4):375-81. PubMed ID: 18421979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LIS1 functions in normal development and disease.
    Reiner O; Sapir T
    Curr Opin Neurobiol; 2013 Dec; 23(6):951-6. PubMed ID: 23973156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dictyostelium Sun1 is a dynamic membrane protein of both nuclear membranes and required for centrosomal association with clustered centromeres.
    Schulz I; Baumann O; Samereier M; Zoglmeier C; Gräf R
    Eur J Cell Biol; 2009 Nov; 88(11):621-38. PubMed ID: 19632001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration.
    Tanaka T; Serneo FF; Higgins C; Gambello MJ; Wynshaw-Boris A; Gleeson JG
    J Cell Biol; 2004 Jun; 165(5):709-21. PubMed ID: 15173193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics.
    Rehberg M; Kleylein-Sohn J; Faix J; Ho TH; Schulz I; Gräf R
    Mol Biol Cell; 2005 Jun; 16(6):2759-71. PubMed ID: 15800059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development.
    Wynshaw-Boris A
    Clin Genet; 2007 Oct; 72(4):296-304. PubMed ID: 17850624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant dentate gyrus cytoarchitecture and fiber lamination in Lis1 mutant mice.
    Wang Y; Baraban SC
    Hippocampus; 2008; 18(8):758-65. PubMed ID: 18446829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies.
    Wynshaw-Boris A; Pramparo T; Youn YH; Hirotsune S
    Semin Cell Dev Biol; 2010 Oct; 21(8):823-30. PubMed ID: 20688183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LIS1 controls mitosis and mitotic spindle organization via the LIS1-NDEL1-dynein complex.
    Moon HM; Youn YH; Pemble H; Yingling J; Wittmann T; Wynshaw-Boris A
    Hum Mol Genet; 2014 Jan; 23(2):449-66. PubMed ID: 24030547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.
    Pramparo T; Libiger O; Jain S; Li H; Youn YH; Hirotsune S; Schork NJ; Wynshaw-Boris A
    PLoS Genet; 2011 Mar; 7(3):e1001331. PubMed ID: 21423666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly.
    Kerjan G; Gleeson JG
    Trends Genet; 2007 Dec; 23(12):623-30. PubMed ID: 17997185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular genetics of lissencephaly and microcephaly].
    Mochida GH
    Brain Nerve; 2008 Apr; 60(4):437-44. PubMed ID: 18421985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella.
    Pedersen LB; Rompolas P; Christensen ST; Rosenbaum JL; King SM
    J Cell Sci; 2007 Mar; 120(Pt 5):858-67. PubMed ID: 17314247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Listen carefully: LIS1 and DCX MLPA in lissencephaly and subcortical band heterotopia.
    Delatycki MB; Leventer RJ
    Eur J Hum Genet; 2009 Jun; 17(6):701-2. PubMed ID: 19050725
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel embryonic neuronal migration and proliferation defects in Dcx mutant mice are exacerbated by Lis1 reduction.
    Pramparo T; Youn YH; Yingling J; Hirotsune S; Wynshaw-Boris A
    J Neurosci; 2010 Feb; 30(8):3002-12. PubMed ID: 20181597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intragenic deletions and duplications of the LIS1 and DCX genes: a major disease-causing mechanism in lissencephaly and subcortical band heterotopia.
    Haverfield EV; Whited AJ; Petras KS; Dobyns WB; Das S
    Eur J Hum Genet; 2009 Jul; 17(7):911-8. PubMed ID: 19050731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lis1 co-localizes with actin in the phagocytic cup and regulates phagocytosis.
    Chhatre A; Sanghavi P; Mallik R
    Cytoskeleton (Hoboken); 2020 Jul; 77(7):249-260. PubMed ID: 32524725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly.
    Morris-Rosendahl DJ; Najm J; Lachmeijer AM; Sztriha L; Martins M; Kuechler A; Haug V; Zeschnigk C; Martin P; Santos M; Vasconcelos C; Omran H; Kraus U; Van der Knaap MS; Schuierer G; Kutsche K; Uyanik G
    Clin Genet; 2008 Nov; 74(5):425-33. PubMed ID: 18954413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between LIS1 and doublecortin, two lissencephaly gene products.
    Caspi M; Atlas R; Kantor A; Sapir T; Reiner O
    Hum Mol Genet; 2000 Sep; 9(15):2205-13. PubMed ID: 11001923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.