These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21035157)

  • 1. Explicit model for ultrasonic attenuation in equiaxial hexagonal polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Apr; 51(3):303-9. PubMed ID: 21035157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic attenuation in pearlitic steel.
    Du H; Turner JA
    Ultrasonics; 2014 Mar; 54(3):882-7. PubMed ID: 24268679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of ultrasonic attenuation in particle-reinforced plastics by a differential scheme.
    Biwa S; Watanabe Y; Motogi S; Ohno N
    Ultrasonics; 2004 Oct; 43(1):5-12. PubMed ID: 15358523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic sizing of short surface cracks.
    Masserey B; Mazza E
    Ultrasonics; 2007 Jun; 46(3):195-204. PubMed ID: 17367834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation.
    Chaix JF; Garnier V; Corneloup G
    Ultrasonics; 2006 Feb; 44(2):200-10. PubMed ID: 16386772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic backscattering model for Rayleigh waves in polycrystals with Born and independent scattering approximations.
    Li S; Huang M; Song Y; Lan B; Li X
    Ultrasonics; 2024 May; 140():107297. PubMed ID: 38520818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.
    Chassignole B; Duwig V; Ploix MA; Guy P; El Guerjouma R
    Ultrasonics; 2009 Dec; 49(8):653-8. PubMed ID: 19450861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of Rayleigh waves due to surface roughness.
    Sarris G; Haslinger SG; Huthwaite P; Nagy PB; Lowe MJS
    J Acoust Soc Am; 2021 Jun; 149(6):4298. PubMed ID: 34241461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain-Size Distribution Effects on the Attenuation of Laser-Generated Ultrasound in α-Titanium Alloy.
    Bai X; Zhao Y; Ma J; Liu Y; Wang Q
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30597990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions.
    Van Pamel A; Brett CR; Huthwaite P; Lowe MJ
    J Acoust Soc Am; 2015 Oct; 138(4):2326-36. PubMed ID: 26520313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic wave propagation in cementitious materials: a multiphase approach of a self-consistent multiple scattering model.
    Molero M; Segura I; Hernández MG; Izquierdo MA; Anaya JJ
    Ultrasonics; 2011 Jan; 51(1):71-84. PubMed ID: 20619866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple scattering from assemblies of dislocation walls in three dimensions. Application to propagation in polycrystals.
    Maurel A; Pagneux V; Barra F; Lund F
    J Acoust Soc Am; 2007 Jun; 121(6):3418-31. PubMed ID: 17552693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic wave transmission through piezoelectric structured materials.
    Lam M; Le Clézio E; Amorín H; Algueró M; Holc J; Kosec M; Hladky-Hennion AC; Feuillard G
    Ultrasonics; 2009 May; 49(4-5):424-31. PubMed ID: 19128815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete.
    Chaix JF; Rossat M; Garnier V; Corneloup G
    J Acoust Soc Am; 2012 Jun; 131(6):4481-90. PubMed ID: 22712921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic attenuation coefficients for polycrystalline materials containing crystallites of any symmetry class.
    Kube CM; Turner JA
    J Acoust Soc Am; 2015 Jun; 137(6):EL476-82. PubMed ID: 26093458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.