These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21035291)

  • 21. Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.
    Chan RW; Titze IR
    Laryngoscope; 1999 Jul; 109(7 Pt 1):1142-9. PubMed ID: 10401858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
    Chan RW; Siegmund T; Zhang K
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):181-9. PubMed ID: 19415568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle spindles are concentrated in the superior vocalis subcompartment of the human thyroarytenoid muscle.
    Sanders I; Han Y; Wang J; Biller H
    J Voice; 1998 Mar; 12(1):7-16. PubMed ID: 9619974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An investigation of left-right vocal fold symmetry in rheological and histological properties.
    Xu CC; Gao A; Zhang S
    Laryngoscope; 2018 Oct; 128(10):E359-E364. PubMed ID: 30098041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal fold vibration mode changes due to cricothyroid and thyroarytenoid muscle interaction in a three-dimensional model of the canine larynx.
    Geng B; Movahhedi M; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Aug; 150(2):1176. PubMed ID: 34470336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
    Kelleher JE; Siegmund T; Chan RW; Henslee EA
    J Biomech; 2011 Jun; 44(9):1729-34. PubMed ID: 21497355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preservation of viscoelastic properties of rabbit vocal folds after implantation of hyaluronic Acid-based biomaterials.
    Choi JS; Kim NJ; Klemuk S; Jang YH; Park IS; Ahn KH; Lim JY; Kim YM
    Otolaryngol Head Neck Surg; 2012 Sep; 147(3):515-21. PubMed ID: 22597579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Pliability of vocal fold mucosa in relation to the location of subglottic mucosal upheaval during phonation].
    Kadota Y
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Aug; 97(8):1423-36. PubMed ID: 7931798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition.
    Chan RW
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1548-61. PubMed ID: 11572365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated Indentation Mapping of Vocal Fold Structure and Cover Properties Across Species.
    Dion GR; Lavoie JF; Coelho P; Amin MR; Branski RC
    Laryngoscope; 2019 Jan; 129(1):E26-E31. PubMed ID: 30408175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cervids with different vocal behavior demonstrate different viscoelastic properties of their vocal folds.
    Riede T; Lingle S; Hunter EJ; Titze IR
    J Morphol; 2010 Jan; 271(1):1-11. PubMed ID: 19603411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    Biomech Model Mechanobiol; 2013 Jun; 12(3):555-67. PubMed ID: 22886592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental studies on the viscoelasticity of the vocal fold.
    Haji T; Mori K; Omori K; Isshiki N
    Acta Otolaryngol; 1992; 112(1):151-9. PubMed ID: 1575031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.