BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 21035461)

  • 1. Multichromatic control of gene expression in Escherichia coli.
    Tabor JJ; Levskaya A; Voigt CA
    J Mol Biol; 2011 Jan; 405(2):315-24. PubMed ID: 21035461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refactoring and optimization of light-switchable Escherichia coli two-component systems.
    Schmidl SR; Sheth RU; Wu A; Tabor JJ
    ACS Synth Biol; 2014 Nov; 3(11):820-31. PubMed ID: 25250630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial complementary chromatic acclimation gene expression system in Escherichia coli.
    Ariyanti D; Ikebukuro K; Sode K
    Microb Cell Fact; 2021 Jul; 20(1):128. PubMed ID: 34225717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic biology: engineering Escherichia coli to see light.
    Levskaya A; Chevalier AA; Tabor JJ; Simpson ZB; Lavery LA; Levy M; Davidson EA; Scouras A; Ellington AD; Marcotte EM; Voigt CA
    Nature; 2005 Nov; 438(7067):441-2. PubMed ID: 16306980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-engineering the two-component systems as light-regulated in
    Ma S; Luo S; Wu LI; Liang Z; Wu JR
    J Biosci; 2017 Dec; 42(4):565-573. PubMed ID: 29229875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light.
    Wilde A; Fiedler B; Börner T
    Mol Microbiol; 2002 May; 44(4):981-8. PubMed ID: 12010493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plate-based assays for light-regulated gene expression systems.
    Tabor JJ
    Methods Enzymol; 2011; 497():373-91. PubMed ID: 21601094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-Violet/Green Photoreversible Transcriptional Regulatory Tool in E. coli.
    Ramakrishnan P; Tabor JJ
    ACS Synth Biol; 2016 Jul; 5(7):733-40. PubMed ID: 27120220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of EnvZ-OmpR two-component system in virulence control of Escherichia coli in Drosophila melanogaster.
    Pukklay P; Nakanishi Y; Nitta M; Yamamoto K; Ishihama A; Shiratsuchi A
    Biochem Biophys Res Commun; 2013 Aug; 438(2):306-11. PubMed ID: 23886953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cyanobacterial gene that interferes with the phosphotransfer signal transduction involved in the osmoregulatory expression of ompC and ompF in Escherichia coli.
    Hirokawa K; Nagaya M; Aiba H; Mizuno T
    Biosci Biotechnol Biochem; 1996 Feb; 60(2):277-83. PubMed ID: 9063976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Phytochromes by High-Cell-Density
    Hörner M; Gerhardt K; Salavei P; Hoess P; Härrer D; Kaiser J; Tabor JJ; Weber W
    ACS Synth Biol; 2019 Oct; 8(10):2442-2450. PubMed ID: 31526004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-dependent regulation of cyanobacterial phytochrome expression.
    García-Domínguez M; Muro-Pastor MI; Reyes JC; Florencio FJ
    J Bacteriol; 2000 Jan; 182(1):38-44. PubMed ID: 10613860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue light-mediated transcriptional activation and repression of gene expression in bacteria.
    Jayaraman P; Devarajan K; Chua TK; Zhang H; Gunawan E; Poh CL
    Nucleic Acids Res; 2016 Aug; 44(14):6994-7005. PubMed ID: 27353329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cyanobacterial phytochrome two-component light sensory system.
    Yeh KC; Wu SH; Murphy JT; Lagarias JC
    Science; 1997 Sep; 277(5331):1505-8. PubMed ID: 9278513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically engineered light sensors for control of bacterial gene expression.
    Camsund D; Lindblad P; Jaramillo A
    Biotechnol J; 2011 Jul; 6(7):826-36. PubMed ID: 21648094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range.
    Ong NT; Tabor JJ
    Chembiochem; 2018 Jun; 19(12):1255-1258. PubMed ID: 29420866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities.
    Fiedler B; Broc D; Schubert H; Rediger A; Börner T; Wilde A
    Photochem Photobiol; 2004 Jun; 79(6):551-5. PubMed ID: 15291308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse transcriptional activities during complementary chromatic adaptation are controlled by the response regulator RcaC binding to red and green light-responsive promoters.
    Li L; Alvey RM; Bezy RP; Kehoe DM
    Mol Microbiol; 2008 Apr; 68(2):286-97. PubMed ID: 18346116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2.
    Choi G; Yi H; Lee J; Kwon YK; Soh MS; Shin B; Luka Z; Hahn TR; Song PS
    Nature; 1999 Oct; 401(6753):610-3. PubMed ID: 10524631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.