These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 21035607)
1. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607 [TBL] [Abstract][Full Text] [Related]
2. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Chung E; Gao R; Ko J; Choi N; Lim DW; Lee EK; Chang SI; Choo J Lab Chip; 2013 Jan; 13(2):260-6. PubMed ID: 23208150 [TBL] [Abstract][Full Text] [Related]
3. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Lee S; Choi J; Chen L; Park B; Kyong JB; Seong GH; Choo J; Lee Y; Shin KH; Lee EK; Joo SW; Lee KH Anal Chim Acta; 2007 May; 590(2):139-44. PubMed ID: 17448337 [TBL] [Abstract][Full Text] [Related]
4. Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor. Gao R; Choi N; Chang SI; Lee EK; Choo J Nanoscale; 2014 Aug; 6(15):8781-6. PubMed ID: 24954446 [TBL] [Abstract][Full Text] [Related]
5. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Wang G; Lim C; Chen L; Chon H; Choo J; Hong J; deMello AJ Anal Bioanal Chem; 2009 Aug; 394(7):1827-32. PubMed ID: 19444432 [TBL] [Abstract][Full Text] [Related]
6. Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Yea KH; Lee S; Kyong JB; Choo J; Lee EK; Joo SW; Lee S Analyst; 2005 Jul; 130(7):1009-11. PubMed ID: 15965522 [TBL] [Abstract][Full Text] [Related]
7. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Yazdi SH; White IM Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering. Kahraman M; Tokman N; Culha M Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038 [TBL] [Abstract][Full Text] [Related]
10. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. Li J; Chen L; Lou T; Wang Y ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic fabrication of SERS-active microspheres for molecular detection. Hwang H; Kim SH; Yang SM Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939 [TBL] [Abstract][Full Text] [Related]
12. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Huang GG; Han XX; Hossain MK; Ozaki Y Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Park T; Lee S; Seong GH; Choo J; Lee EK; Kim YS; Ji WH; Hwang SY; Gweon DG; Lee S Lab Chip; 2005 Apr; 5(4):437-42. PubMed ID: 15791342 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Lee D; Lee S; Seong GH; Choo J; Lee EK; Gweon DG; Lee S Appl Spectrosc; 2006 Apr; 60(4):373-7. PubMed ID: 16613632 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Yang X; Gu C; Qian F; Li Y; Zhang JZ Anal Chem; 2011 Aug; 83(15):5888-94. PubMed ID: 21692506 [TBL] [Abstract][Full Text] [Related]
17. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes. Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468 [TBL] [Abstract][Full Text] [Related]
19. Surface-enhanced Raman scattering (SERS) characterization of trace organoarsenic antimicrobials using silver/polydimethylsiloxane nanocomposites. Olavarría-Fullerton J; Wells S; Ortiz-Rivera W; Sepaniak MJ; De Jesús MA Appl Spectrosc; 2011 Apr; 65(4):423-8. PubMed ID: 21396190 [TBL] [Abstract][Full Text] [Related]
20. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]