BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21035607)

  • 1. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor.
    Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J
    Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel.
    Chung E; Gao R; Ko J; Choi N; Lim DW; Lee EK; Chang SI; Choo J
    Lab Chip; 2013 Jan; 13(2):260-6. PubMed ID: 23208150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.
    Lee S; Choi J; Chen L; Park B; Kyong JB; Seong GH; Choo J; Lee Y; Shin KH; Lee EK; Joo SW; Lee KH
    Anal Chim Acta; 2007 May; 590(2):139-44. PubMed ID: 17448337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor.
    Gao R; Choi N; Chang SI; Lee EK; Choo J
    Nanoscale; 2014 Aug; 6(15):8781-6. PubMed ID: 24954446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions.
    Wang G; Lim C; Chen L; Chon H; Choo J; Hong J; deMello AJ
    Anal Bioanal Chem; 2009 Aug; 394(7):1827-32. PubMed ID: 19444432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy.
    Yea KH; Lee S; Kyong JB; Choo J; Lee EK; Joo SW; Lee S
    Analyst; 2005 Jul; 130(7):1009-11. PubMed ID: 15965522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants.
    Yazdi SH; White IM
    Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems.
    Cecchini MP; Hong J; Lim C; Choo J; Albrecht T; Demello AJ; Edel JB
    Anal Chem; 2011 Apr; 83(8):3076-81. PubMed ID: 21413700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles.
    Li J; Chen L; Lou T; Wang Y
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study.
    Park T; Lee S; Seong GH; Choo J; Lee EK; Kim YS; Ji WH; Hwang SY; Gweon DG; Lee S
    Lab Chip; 2005 Apr; 5(4):437-42. PubMed ID: 15791342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy.
    Lee D; Lee S; Seong GH; Choo J; Lee EK; Gweon DG; Lee S
    Appl Spectrosc; 2006 Apr; 60(4):373-7. PubMed ID: 16613632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers.
    Yang X; Gu C; Qian F; Li Y; Zhang JZ
    Anal Chem; 2011 Aug; 83(15):5888-94. PubMed ID: 21692506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering (SERS) characterization of trace organoarsenic antimicrobials using silver/polydimethylsiloxane nanocomposites.
    Olavarría-Fullerton J; Wells S; Ortiz-Rivera W; Sepaniak MJ; De Jesús MA
    Appl Spectrosc; 2011 Apr; 65(4):423-8. PubMed ID: 21396190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.