BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21035607)

  • 21. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor.
    Fang J; Liu S; Li Z
    Biomaterials; 2011 Jul; 32(21):4877-84. PubMed ID: 21492933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy.
    Shkilnyy A; Soucé M; Dubois P; Warmont F; Saboungi ML; Chourpa I
    Analyst; 2009 Sep; 134(9):1868-72. PubMed ID: 19684912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.
    Wilson R; Bowden SA; Parnell J; Cooper JM
    Anal Chem; 2010 Mar; 82(5):2119-23. PubMed ID: 20121214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free detection of proteins from self-assembled protein-silver nanoparticle structures using surface-enhanced Raman scattering.
    Kahraman M; Sur I; Culha M
    Anal Chem; 2010 Sep; 82(18):7596-602. PubMed ID: 20795644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface.
    Yamamoto S; Watarai H
    Langmuir; 2006 Jul; 22(15):6562-9. PubMed ID: 16830998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate.
    Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR
    Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering.
    Alvarez-Puebla RA; Aroca RF
    Anal Chem; 2009 Mar; 81(6):2280-5. PubMed ID: 19222226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced Raman scattering of 5-fluorouracil adsorbed on silver nanostructures.
    Sardo M; Ruano C; Castro JL; López-Tocón I; Soto J; Ribeiro-Claro P; Otero JC
    Phys Chem Chem Phys; 2009 Sep; 11(34):7437-43. PubMed ID: 19690716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection.
    Zhang Z; Wen Y; Ma Y; Luo J; Jiang L; Song Y
    Chem Commun (Camb); 2011 Jul; 47(26):7407-9. PubMed ID: 21594282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine.
    López-Tocón I; Otero JC; Arenas JF; García-Ramos JV; Sánchez-Cortés S
    Langmuir; 2010 May; 26(10):6977-81. PubMed ID: 20205417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.
    Ruan C; Luo W; Wang W; Gu B
    Anal Chim Acta; 2007 Dec; 605(1):80-6. PubMed ID: 18022414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.