These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21035607)

  • 41. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes.
    Li F; Wang J; Lai Y; Wu C; Sun S; He Y; Ma H
    Biosens Bioelectron; 2013 Jan; 39(1):82-7. PubMed ID: 22840330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms.
    Knauer M; Ivleva NP; Liu X; Niessner R; Haisch C
    Anal Chem; 2010 Apr; 82(7):2766-72. PubMed ID: 20196561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparative isotachophoresis with surface enhanced Raman scattering as a promising tool for clinical samples analysis.
    Ranc V; Staňová A; Marák J; Maier V; Sevčík J; Kaniansky D
    J Chromatogr A; 2011 Jan; 1218(2):205-10. PubMed ID: 21144526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering.
    Izquierdo-Lorenzo I; Sanchez-Cortes S; Garcia-Ramos JV
    Langmuir; 2010 Sep; 26(18):14663-70. PubMed ID: 20799745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions.
    Huang GG; Hossain MK; Han XX; Ozaki Y
    Analyst; 2009 Dec; 134(12):2468-74. PubMed ID: 19918619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation.
    Thuy NT; Yokogawa R; Yoshimura Y; Fujimoto K; Koyano M; Maenosono S
    Analyst; 2010 Mar; 135(3):595-602. PubMed ID: 20174716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum.
    Stokes RJ; McBride E; Wilson CG; Girkin JM; Smith WE; Graham D
    Appl Spectrosc; 2008 Apr; 62(4):371-6. PubMed ID: 18416893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SERS not to be taken for granted in the presence of oxygen.
    Erol M; Han Y; Stanley SK; Stafford CM; Du H; Sukhishvili S
    J Am Chem Soc; 2009 Jun; 131(22):7480-1. PubMed ID: 19445502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The study of adsorption of L-aspartic acid on silver sol by surface-enhanced Raman scattering].
    Zhu ZL; Gao JY; Li FT; Zhang BR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):68-70. PubMed ID: 15768979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ surface-enhanced Raman scattering analysis of biofilm.
    Ivleva NP; Wagner M; Horn H; Niessner R; Haisch C
    Anal Chem; 2008 Nov; 80(22):8538-44. PubMed ID: 18947197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrete free-surface millifluidics for rapid capture and analysis of airborne molecules using surface-enhanced Raman spectroscopy.
    Piorek BD; Andreou C; Moskovits M; Meinhart CD
    Anal Chem; 2014 Jan; 86(2):1061-6. PubMed ID: 24393015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres.
    Chon H; Lim C; Ha SM; Ahn Y; Lee EK; Chang SI; Seong GH; Choo J
    Anal Chem; 2010 Jun; 82(12):5290-5. PubMed ID: 20503972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface-enhanced Raman scattering sensor for theophylline determination by molecular imprinting on silver nanoparticles.
    Liu P; Liu R; Guan G; Jiang C; Wang S; Zhang Z
    Analyst; 2011 Oct; 136(20):4152-8. PubMed ID: 21853172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water.
    Mulvihill M; Tao A; Benjauthrit K; Arnold J; Yang P
    Angew Chem Int Ed Engl; 2008; 47(34):6456-60. PubMed ID: 18618882
    [No Abstract]   [Full Text] [Related]  

  • 60. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device.
    Li B; Zhang W; Chen L; Lin B
    Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.